
..Software Engineering
By

Mrs. R.Waheetha, MCA, M.Phil
Head,
Department of Computer Science
Holy Cross Home Science College
Thoothukudi

Unit I

(syllabus)
 Introduction:- Evolution – From an Art form on Engineering

Discipline: Evolution of an Art into an Engineering Discipline.

– Software Development of Projects: Program versus Product –

Emergence of Software Engineering: Early Computer

Programming – High Level Language Programming – Control

Flow-based Design – Data Structure Oriented Design – Object

Oriented Design. Software Life Cycle Models:- A few Basic

Concepts – Waterfall Model and its Extension: Classical

Waterfall Model – Iterative Waterfall Model – Prototyping

Model – Evolutionary Model. – Rapid Application

Development (RAD): Working of RAD. –Spiral Model.

EVOLUTION—FROM AN ART FORM TO A N

ENGINEERING DISCIPLINE

 Software engineering principles have evolved over

the last sixty years with contributions from

numerous researchers and software professionals.

 Over the years, it has emerged from a pure art to a

craft, and finally to an engineering discipline.

 The early programmers used an ad hoc

programming style.

 This style of program development is now

variously being referred to as exploratory, build

and fix, and code and fix styles.

 In a build and fix style, a program is quickly

developed without making any specification, plan, or

design.

 The exploratory programming style is an informal

style in the sense that there are no set rules or

recommendations that a programmer has to adhere

to—every programmer himself evolves his own

software development techniques solely guided by his

own intuition, experience, whims, and fancies.

 The exploratory style comes naturally to all first time

programmers.

Evolution Pattern for Engineering

Disciplines
 The evolution of the software development styles over the

last sixty years, tells that it has evolved from an esoteric

art form to a craft form, and then has slowly emerged as

an engineering discipline.

 Every technology in the initial years starts as a form of art.

 Over time, it graduates to a craft and finally emerges as an

engineering discipline.

 Those who knew iron making, kept it a closely-guarded

secret.

 This esoteric knowledge got transferred from generation t

generation as a family secret.

 Slowly, over time technology graduated from an art to a

craft form where tradesmen shared their knowledge with

their apprentices and the knowledge pool continued to

grow.

 In the early days of programming, there were good

programmers and bad programmers.

 The good programmers knew certain principles (or tricks)

that helped them write good programs, which they did not

share with the bad programmers.

 Over the next several years, all good principles were

organised into a body of knowledge that forms the

discipline of software engineering.

A Solution to the Software Crisis

 Software engineering is one options that is available to tackle

the present software crisis.

 The expenses that organizations all over the world are

incurring on software purchases as compared to the expenses

incurred on hardware purchases have been showing an

worrying trend over the years

 The trend of increasing software costs is probably the most

vexing.

 Hardware Prices would become insignificant compared to

software prices—when you buy any software product the

hardware on which the software runs would come free with the

software!!!

Factors that contribute to the present software crisis are

 Rapidly increasing problem size

 Lack of adequate training in software engineering

techniques

 Increasing skill

 Shortage and low productivity improvements.

 What is the remedy?

 It is believed that a satisfactory solution to the present software

crisis can possibly come from a spread of software engineering

practices among the developers, along with the further

advancements .

SOFTWARE DEVELOPMENT

PROJECTS

 Programs versus Products
 Many toy software are developed by individuals such as students

for their classroom assignments and for their personal use.

 These are usually small in size and support limited functionalities.

 The author of a program is usually the sole user of the software
and himself maintains the code.

 These toy software lack good user-interface and proper
documentation.

 It has poor maintainability, efficiency, and reliability.

 Since these toy software do not have any supporting documents
such as users’ manual, maintenance manual, design document,
test documents, etc., we call these toy software as programs.

 In contrast, professional software usually have multiple users

and, therefore, have good user-interface, proper users’ manuals,

and good documentation support.

 It is systematically designed, carefully implemented, and

thoroughly tested.

 In addition, a professionally written software usually consists

not only of the program code but also of all associated

documents such as requirements specification document,

design document, test document, users manuals, etc.

 A other difference is that professional software are often too

large and complex to be developed by any single individual.

 It is usually developed by a group of developers working in a

team.

 A professional software is developed by a group of

software developers working together in a team. I

 So we have to use some systematic development

methodology.

 Else they would find it very difficult to interface and

understand each other’s work, and produce a coherent set

of documents.

 However, when developing small programs for personal

use, rigid adherence to software engineering principles is

often not worthwhile.

 An ant can be killed using a gun, but it would be

ridiculously inefficient and inappropriate.

EMERGENCE OF SOFTWARE

ENGINEERING

1. Early Computer Programming

 Early commercial computers were slow and

elementary.

 It look lot of time for computation.

 Programs were very small in size and was written

in assembly language.

 Programmers wrote it without proper plan, design

etc.

2. High Level Language Programming
 Computers became faster with the introduction of this

semiconductor technologies.

 This helped to solve more complex problems.

 At this time, high level language BASIC, FORTRAN,
COBOL were introduced.

3. Control Flow-Based Design
 Programmers found it difficult to write cost effective and

correct program.

 They also found it difficult to understand and maintain
program written by others.

 So they started to pay attention to program’s control
flow structure.

 Thus flow charting technique was developed. Eg: fig 1.8.

4. Data Structure – Oriented Design
 While developing program, it was found that

attention should be paid on data structure.

 An example of data structure oriented design is JSP (
Jackson’s Structured Programming).

 This helped to derive the program structure from its
data structure representation.

5. Data Flow – Oriented Design
 In this, the major data items handled must be identified and

then the processing required on these data items to produce
required output must be determined.

 The functions (processes) and the data items that are
exchanged between the different function are represented as
Data Flow Diagram (DFD) .

6. Object – Oriented Design

 It is a technique which deals with natural objects.

Problems are identified and then relationship

among the objects like composition, reference and

inheritance are determined.

 It has gained good acceptance because of its

simplicity, scope for code, design reuse, lower

development cost and easy

Software life cycle
 All living organisms undergo a life cycle.

 example when a seed is planted, it germinates, grows into

a full tree, and finally dies.

 The term software life cycle has been defined to imply the

different over which a software evolves from an initial

customer request , then fully developed software, and

finally to a stage where it is no longer useful to any user,

and then it is discarded.

 The life cycle of every software starts with a request for it by
one or more customers.

 At this stage, the customers are not clear about all the features
that are needed.

 They can only vaguely describe what is needed.

 This is the stage where the customer feels a need for the
software and forms rough ideas about the required features is
known as the inception stage.

 In the inception stage, a software evolves through a series of
identifiable stages (also called phases).

 Then development activities are carried out by the developers,
until it is fully developed and is released to the customers.

 Once installed, it is made available for use, the users start to
use the software.

 This is the start of the operation (also called maintenance)
phase.

 As the users use the software, they request for fixing any
failures that they find.

 They also continually suggest several improvements and
modifications to the software.

 Thus, the maintenance phase involves continually making
changes to the software to accommodate the bug-fix and
change requests from the user.

 The operation phase is usually the longest of all phases and
constitutes the useful life of a software.

 Finally the software is retired, when the users do not find it
any longer useful due to reasons such as changed business
scenario, availability of a new software having improved
features and working, changed computing platforms, etc.

 This forms the essence of the life cycle of every software.

Software development life cycle

(SDLC) model
 A software development life cycle (SDLC) model describes the

different activities that is needed to be carried out for the software to

evolve .

 Software development life cycle (SDLC) and software development

process interchangeable from a software development process.

 A software development process describes the life cycle activities

more precisely and elaborately, as compared to an SDLC.

 A development process also prescribe a specific methodologies to

carry out the activities, and also recommends the specific documents

and other artifacts that should be produced at the end of each phase.

 The term SDLC can be considered to be a more generic term, as

compared to the development process

 An SDLC graphically depicts the different phases through

which a software evolves. It is usually accompanied by a

textual description of the different activities that need to

be carried out during each phase.

Process versus methodology
 A software development process has a much broader

scope as compared to a software development
methodology.

 A process usually describes all the activities starting from
the inception of a software to its maintenance and
retirement stages, or at least a chunk of activities in the
life cycle.

 It also recommends specific methodologies for carrying
out each activity.

 A methodology, describes the steps to carry out only a
single or at best a few individual activities.

Why use a development process?
 The primary advantage of using a development process is that

it encourages development of software in a systematic and
disciplined manner.

 It is important that the development of professional software
need team effort.

 When software is developed by a team than individual
programmer, use of a life cycle model becomes successful
completion of the project.

 Software development organizations have realized that
suitable life cycle model helps to produce good quality
software and that helps minimize the chances of time and cost
overruns.

 Suppose a single programmer is developing a small

program.

 For example, a student may be developing code for a

class room assignment.

 The student might succeed even when he does not

strictly follow a development process and adopts a

build and fix style of development.

 What difficulties will arise if a team does not use any

development process, and the team members are given

complete freedom to develop their assigned part of the

software as per their own idea.

 A software development problem has been divided

into several parts and these parts are assigned to the

team members.

 Suppose the team members are given freedom to develop
the parts assigned to them in whatever way they like.

 It is possible that one member might start writing the code
for his part while making assumptions about the input
results required from the other parts, another might decide
to prepare the test documents first, and some other
developer might start to carry out the design for the part
assigned to him.

 In this case, severe problems can arise in interfacing the
different parts and in managing the overall development. T

 Therefore, ad hoc development turns out to be is a sure
way to have a failed project.

 This is exactly what has caused many project failures in
the past!

 When a software is developed by a team, it is necessary to have a
precise understanding among the team members as to - when to do
what.

 The use of a suitable life cycle model is crucial to the successful
completion of a team-based development project.

 But, do we need an SDLC model for developing a small program.

 We need to distinguish between programming-in-the-small and

 programming-in-the-large.

 Programming-in-the-small refers to development of a toy program
by a single programmer.

 Whereas programming-in-the-large refers to development of a
professional software through team effort.

 While development of a software of the smaller type could succeed
even while an individual programmer uses a build and fix

 style of development, use of a suitable SDLC is essential for a
professional software development project involving team effort to
succeed.

Why document a development

process?
 An organisation must have not only well-defined development process, but

the development process needs to be properly documented.

 Consider development organisation which does not document its

development process.

 In this case, its developers develop only an informal understanding of the

development process.

 An informal understanding of the development process among the team

members can create several problems during development.

 A few important problems that may come across when a development

process is not adequately documented. Some are:

 A documented process model ensures that every activity in the life cycle

is accurately defined.

 Also, wherever necessary the methodologies for carrying out the

respective activities are described Without documentation, the activities

and their ordering tend to be loosely defined, leading to confusion and

misinterpretation by different teams in the organisation.

 Eg : code reviews may informally and inadequately be carried
out since there is no documented methodology as to how the
code review should be done.

 Another difficulty is that for loosely defined activities, the
developers tend to use their subjective judgments.

 Also, they would debate whether the test cases should be
documented at all.

 An undocumented process gives a clear indication to the
members of the development teams about the lack of
seriousness on the part of the management of the organisation
about the process.

 Therefore, an undocumented process serves as a hint to the
developers to loosely follow the process.

 The symptoms of an undocumented process are easily
visible—designs are shabbily done, reviews are not carried out
properly.

 A project team might often have to tailor a standard process
model for use in a specific project.

 It is easier to tailor a documented process model, when it is
required to modify certain activities or phases of the life cycle.

 A documented process model, is a mandatory requirement of
the modern quality assurance standards such as ISO 9000 and
SEI CMM.

 This means that unless a software organisation has a
documented process, it would not qualify for accreditation with
any of the quality standards.

 In the absence of a quality certification for the organisation, the
customers would doubt the capability of developing quality
software and the organisation might find it difficult to win
tenders for software development.

 Nowadays, good software development organisations
document their development process in the form of a booklet.

Phase entry and exit criteria
 A good SDLC should define the entry and exit criteria for each

phase.

 The phase entry (or exit) criteria is usually expressed as a set of

conditions that needs to be be satisfied for the phase to start (or

to complete).

 As an example, the phase exit criteria for the software

requirements specification phase, can be that the software

requirements specification (SRS) document is ready, has been

reviewed internally, and also has been reviewed and approved

by the customer.

 Only after these criteria are satisfied, the next phase can start.

 If the entry and exit criteria for various phases are not well-defined,
then therr is scope for ambiguity in starting and ending various
phases, and cause lot of confusion among the developers.

 Sometimes they might stop the activities in a phase, and some other
times may take more time than the phase should have been over.

 The decision regarding whether a phase is complete or not becomes
difficult for the project manager to accurately tell how much has the
development progressed.

 When the phase entry and exit criteria are not well-defined, the
developers might close the activities of a phase much before they are
actually complete, giving a false impression of rapid progress.

 In this case, it becomes very difficult for the project manager to
determine the exact status of development and track the progress of
the project.

 This usually leads to a problem that is usually identified as the 99
per cent complete syndrome.

The different phases of this model are

 Feasibility study

 Requirement analysis and specification

Design

Coding and unit testing

Integration and system testing

Maintenance

 It is to determine if it is financially and technically feasible

to develop product.

 It involves analysis of problem and collection of relevant

information. Collected data are analyzed to get.

 An abstract problem definition:

 Only important requirements of customers are collected others are

ignored.

 Formulation of the different strategies for solving the problem.

 Evaluation of different solution strategies. i.e. estimates of

resource required, cost, time, etc.

Feasibility study

Requirement analysis and specification

It has two phase

 Requirement gathering and analysis

 Requirement specification

Requirement gathering and analysis
 The goal of requirement gathering is to collect are

relevant information from the customer with a clear
view

Requirement specification
 Both analysis and gathering activity are organized

into Software Requirement Specification (SRS)
document. The three important contents of this
documents are
 Functional requirement

 Non function requirement

 Goals of implementation

 The SRS serves as a contract between
development team and the customer.

Design

Goal of design is to transform the requirements

in SRS document into a structure suitable for

implementation. There are two approaches.

 Traditional design approach

 Object – Oriented design approach

Traditional design approach:

 It is based on data – flow oriented design

approach.

 Structured analysis is carried out followed by

structured design activity.

 Data Flow Diagram (DFD) are used to perform

structured analysis.

 Structured design has two activities i.e.

architectural design and detailed design

Object Oriented design approach:

Various objects that occur in the problem

domain and solution domain are identified.

The relationship between these objects are

identified.

 It is further refined to obtain detailed design.

Coding and unit testing

 The purpose of this phase is to translate the software

design into source code.

 Each component of design is implemented as a

program module.

 After coding is completed, each module is unit tested.

 The main objective of unit testing is to determine the

correct working of individual modules.

Integration and System testing
 During this phase, the different modules are

integrated.

 It is carried out incrementally over a no. of slips.

 After integrating all modules system testing is carried
out.

 There are three types of system testing.

 α-testing - testing performed by the development team

 β-testing – testing performed by a friendly set of customer.

 Acceptance testing – performed by the customer after
product delivery to find whether to accept or reject it.

Maintenance

 Maintenance requires more effort. It is roughly in
40:60 ratio. There are three kinds of activities.

 Corrective maintenance
 It involves in correcting the errors found during product

development phase.

 Perfective maintenance
 It involves in improving and enhancing the functionalities of

the system.

 Adaptive maintenance
 It is required for porting the software to work in a new

environment.

Shortcomings of the classical

waterfall model

 No feedback paths:

 Just as water in a waterfall after having flowed down

cannot flow back, once a phase is complete, the

activities carried out in it and this phase are considered

to be final and are closed for any rework.

 This requires that all activities during a phase are

flawlessly carried out.

 The classical waterfall model incorporates no

mechanism for error correction.

 Programmers are humans and as the old adage says to
err is humane.

 The cause for errors can be many—oversight, wrong
interpretations, use of incorrect solution scheme,
communication gap, etc.

 These defects usually get detected much later in the
life cycle like in coding or testing.

 Once a defect is detected at a later time, the developers
need to redo some of the work done during that phase.

 Therefore, it becomes impossible to strictly follow the
classical waterfall model of software development.

 Difficult to accommodate change requests:

 This model assumes that all customer requirements can
be completely and correctly defined at the beginning of
the project.

 The customers’ requirements usually keep on changing
with time.

 But, in this model it is difficult to accommodate the
requirement change requests made by the customer
after the requirements specification phase is complete.

 Inefficient error corrections:

 This model defers integration of code and testing tasks

until it is very late when the problems are harder to

resolve.

No overlapping of phases:
 This model recommends that the phases be carried out

sequentially—new phase can start only after the previous

one completes.

 For example, for efficient utilisation of manpower, the

testing team might need to design the system test cases

immediately after requirements specification is complete.

 In this case, the activities of the design and testing phases

overlap.

 Consequently, it is safe to say the different phases need to

overlap for cost and efficiency reasons.

 The main change brought about by the iterative waterfall model

to the classical waterfall model is in the form of providing

feedback paths from every phase to its preceding phases.

 The feedback paths allow for correction of the errors
committed during a phase, as and when errors are detected in
later phases i.e. it allows to correct the errors found in that
phase.

 But there is no feedback path to the feasibility stage.

 Phase Containment of Errors:
 Though errors cannot be avoided, it is desirable to detect the

errors in the same phase in which they occur.

 This can reduce the effort required for correcting bugs.

 Eg. If a problem is found in design phase, it must be
identified and corrected in that phase itself.

 The errors should be detected as early as possible.

 The principle of detecting errors as close to their point of
introduction as possible is known as phase containment of
errors.

How can phase containment of errors be

achieved?

 An important technique is frequently used to conduct review

after every milestone.

 In spite of best effort to detect error in the same phase, still

some errors can escape.

 So rework of already completed phase is required.

 Thus cannot complete phase at specified time.

 This makes the different life cycle phase overlap in time.

 Shortcomings of the iterative waterfall model

 The iterative waterfall model is a simple and intuitive

software development model.

 It was used satisfactorily during 1970s and 1980s.

 The projects are now shorter, and involve Customised

software development.

 Software was earlier developed from scratch.

 Now reuse of code is possible.

 The software services (customised software) are poised to

become the dominant types of projects.

 Difficult to accommodate change requests:
 A major problem with the waterfall model is that the

requirements need to be frozen before the development
starts.

 Accommodating even small change requests after the
development activities are difficult.

 Once requirements have been frozen, the waterfall model
provides no scope for any modifications to the requirements.

 Requirement changes can arise due to a variety of reasons
including the following—requirements were not clear to the
customer, requirements were misunderstood, business
process o f the customer may have changed after the SRS
document was signed off, etc.

 In fact, customers get clearer understanding of their
requirements only after working on a fully developed and
installed system.

 Incremental delivery not supported:

 In the iterative waterfall model, the full software is completely
developed and tested before it is delivered to the customer.

 There is no provision for any intermediate deliveries to occur.

 This is problematic because the complete application may take
several months or years to be completed and delivered to the
customer.

 By the time the software is delivered, installed, and becomes
ready for use, the customer’s business process might have
changed substantially.

 This makes the developed application a poor fit to the customer’s
requirements.

 Phase overlap not supported:

 For most real life projects, it becomes difficult to follow the rigid
phase sequence prescribed by the waterfall model.

 By the term a rigid phase sequence, we mean that a phase can
start only after the previous phase is complete in all respects.

 Strict adherence to the waterfall model creates blocking states.

Error correction unduly expensive:

 In waterfall model, validation is delayed till the complete

development of the software.

 As a result, the defects that are noticed at the time of

validation incur expensive rework and result in cost

escalation and delayed delivery.

 Limited customer interactions:

 This model supports very limited customer interactions.

 It is generally accepted that software developed in isolation

from the customer is the cause of many problems.

 Interactions occur only at the start of the project and at

project completion.

 As a result, the developed software usually turns out to be a

misfit to the customer’s actual requirements.

 Heavy weight:

 The waterfall model over emphasises documentation.

 A significant portion of the time of the developers is spent in

preparing documents, and revising them as changes occur

over the life cycle.

 Heavy documentation though useful during maintenance

and for carrying out review, is a source of team inefficiency.

 No support for risk handling and code reuse:

 It becomes difficult to use the waterfall model in projects

that are susceptible to various types of risks, or those

involving significant reuse of existing development artifacts.

 The prototyping model can be considered to be an extension of the

waterfall model.

 A prototype is a toy and crude implementation of a system.

 It has limited functional capabilities, low reliability, or inefficient

performance as compared to the actual software.

 A prototype can be built very quickly by using several shortcuts.

 The shortcuts usually involve developing inefficient, inaccurate, or

dummy functions.

 The shortcut implementation of a function, may produce the desired

results by using a table look-up rather than by performing the actual

computations.

 Normally the term rapid prototyping is used when software tools are

used for prototype construction.

 For example, tools based on fourth generation languages (4GL) may

be used to construct the prototype for the GUI parts.

 Necessity of the prototyping model
 We identify three types of projects for which the prototyping model can be

followed to advantage:

 It is advantageous to use the prototyping model for development of the

graphical user interface (GUI) part of an application.

 It is easier to illustrate the input data formats, messages, reports, and the

interactive dialogs to the customer.

 It is much easier to form an opinion regarding what would be more suitable by

experimenting with a working user interface, rather than trying to imagine the

working of a user interface.

 The prototyping model is especially useful when the exact technical solutions

are unclear to the development team.

 A prototype can help them to critically examine the technical issues associated

with product development.

 For example, consider a situation where the development team has to write a

command language interpreter as part of a graphical user interface development.

 Suppose none of the team members has ever written a compiler before.

 This risk can be resolved by developing a prototype compiler for a very small

language to understand the issues associated with writing a compiler for a

command language.

 Once they feel confident in writing compiler for the small language, they can

use this knowledge to develop the compiler for the command language.

 An important reason for developing a prototype is that it is impossible to “get

it right” the first time.

 One must plan to throw away the software in order to develop a good

software later.

 Thus, the prototyping model can be deployed when development of highly

optimised and efficient software is required

 The prototyping model is considered to be useful for the

development of not only the GUI parts of a software, but also

for a software project for which certain technical issues are not

clear to the development team.

Life cycle activities of prototyping model

 The prototyping model of software development is
graphically shown in Figure

 Prototype development:
 Prototype development starts with an initial requirements gathering

phase.

 A quick design is carried out and a prototype is built.

 The developed prototype is submitted to the customer for evaluation.

 Based on the customer feedback, the requirements are refined and the
prototype is suitably modified.

 This cycle of obtaining customer feedback and modifying the prototype
continues till the customer approves the prototype.

 Iterative development:

 Once the customer approves the prototype, the actual software is
developed using the iterative waterfall approach.

 The SRS document is usually needed to be developed since the
SRS document is invaluable for carrying out traceability analysis,
verification, and test case design during later phases.

 However, the requirements analysis and specification phase
becomes redundant since the working prototype that has been
approved by the customer serves as an animated requirements
specification.

 The code for the prototype is usually thrown away.

 Strengths of the prototyping model
 This model is the most appropriate for projects that suffer from

technical and requirements risks.

 A constructed prototype helps overcome these risks.

 Weaknesses of the prototyping model
 The prototype model can increase the cost of development for

projects that are routine development work and do not suffer from
any significant risks.

 Even when a project is susceptible to risks, the prototyping
model is effective only for those projects for which the risks can
be identified before the development starts.

 Since the prototype is constructed only at the start of the project,
the prototyping model is ineffective for risks identified later
during the development cycle.

 The prototyping model would not be appropriate for projects for
which the risks can only be identified after the development is
underway.

 The rapid application development (RAD) model was proposed

in the early nineties in an attempt to overcome the rigidity of

the waterfall model that makes it difficult to accommodate any

change requests from the customer.

 It has a few extensions from the waterfall model.

 It deploys an evolutionary delivery model to obtain and

incorporate the customer feedbacks on incrementally delivered

versions.

 In this model prototypes are constructed, and incrementally the

features are developed and delivered to the customer.

 But unlike the prototyping model, the prototypes are not

thrown away but are enhanced and used in the software

construction

The major goals of the RAD model are as

follows:

 To decrease the time taken and the cost incurred to

develop software systems.

 To limit the costs of accommodating change requests.

 T o reduce the communication gap between the

customer and the developers.

Main motivation
 In the iterative waterfall model, the customer requirements need

to be gathered, analysed, documented, and signed off upfront,
before any development could start.

 Often clients do not know what they exactly wanted until they
saw a working system.

 It has now become practice that only through the process
commenting on an installed application that the exact
requirements can be brought out.

 Naturally, the delivered software often does not meet the
customer expectations and many change request are generated by
the customer.

 The changes are incorporated through subsequent maintenance
efforts.

 This made the cost of accommodating the changes extremely high
and it usually took a long time to have a good solution.

 The RAD model tries to overcome this problem by inviting and
incorporating customer feedback on successively developed and
refined prototypes.

Working of RAD

 In the RAD model, development takes place in a series of short

cycles or iterations.

 At any time, the development team focuses on the present

iteration only, and therefore plans are made for one increment

at a time.

 The time planned for each iteration is called a time box. Each

iteration is planned to enhance the implemented functionality

of the application by only a small amount.

 During each time box, a quick-and-dirty prototype-style

software for some functionality is developed.

 The customer evaluates the prototype and gives feedback on

the specific improvements that may be necessary.

 The prototype is refined based on the customer

feedback.

 The development team almost always includes a

customer representative to clarify the requirements.

 This is intended to make the system tuned to the exact

customer requirements and also to bridge the

communication gap between the customer and the

development team.

 The development team usually consists of about five

to six members, including a customer representative.

How does RAD facilitate accommodation

of change requests?
 The customers usually suggest changes to a specific

feature only after they have used it.

 Since the features are delivered in small increments,

the customers are able to give their change requests

pertaining to a feature already delivered.

 Incorporation of such change requests just after the

delivery of an incremental feature saves cost as this is

carried out before large investments have been made in

development and testing of a large number of features.

How does RAD facilitate faster development?

 The decrease in development time and cost, and at the same time an
increased flexibility to incorporate changes are achieved in the RAD model
in two main ways—minimal use of planning and heavy reuse of any
existing code through rapid prototyping.

 The lack of long-term and detailed planning gives the flexibility to
accommodate later requirements changes.

 Reuse of existing code has been adopted as an important mechanism of
reducing the development cost.

 RAD model emphasises code reuse as an important means for completing a
project faster.

 In fact, the adopters of the RAD model were the earliest to embrace object-
oriented languages and practices.

 Further, RAD advocates use of specialised tools to facilitate fast creation of
working prototypes.

 These specialised tools usually support the following features:

 Visual style of development.

 Use of reusable components.

Applicability of RAD Model

 The following are some of the characteristics of an application
that indicate its suitability to RAD style of development:
 Customised software:

 A customised software is developed for one or two customers only by
adapting an existing software.

 In customised software development projects, reuse is usually made
of code from pre-existing software.

 For example, a company might have developed a software for
automating the data processing activities at one or more educational
institutes.

 When any other institute requests for an automation package to be
developed, typically only a few aspects needs to be tailored—since
among different educational institutes, most of the data processing
activities such as student registration, grading, fee collection, estate
management, accounting, maintenance of staff service records etc. are
similar to a large extent.

 Projects involving such tailoring can be carried out speedily and cost
effectively using the RAD model

 Non-critical software:

 The RAD model suggests that a quick and dirty software should first be
developed and later this should be refined into the final software for
delivery.

 The developed product is usually far from being optimal in performance
and reliability.

 For well understood development projects and where the scope of reuse
is rather restricted, the Iterative waterfall model may provide a better
solution.

 Highly constrained project schedule:

 RAD aims to reduce development time at the expense of good
documentation, performance, and reliability.

 For projects with very aggressive time schedules, RAD model should be
preferred.

 Large software:

 Only for software supporting many features (large software) can
incremental development and delivery be meaningfully carried out.

Application characteristics that

render RAD unsuitable
 The RAD style of development is not advisable if a development

project has one or more of the following characteristics:

 Generic products (wide distribution):
 Software products are generic in nature and usually have wide

distribution.

 For such systems, optimal performance and reliability are imperative in
a competitive market.

 The RAD model of development may not yield systems having optimal
performance and reliability.

 Requirement of optimal performance and/or reliability:
 For certain categories of products, optimal performance or reliability is

required.

 Examples of such systems include an operating system (high reliability
required) and a flight simulator software (high performance required).

 If such systems are to be developed using the RAD model, the desired
product performance and reliability may not be realised.

 Lack of similar products:

 If a company has not developed similar software, then it

would hardly be able to reuse much of the existing artifacts.

 In the absence of sufficient plug-in components, it becomes

difficult to develop rapid prototypes through reuse, and use

of RAD model becomes meaningless.

 Monolithic entity:

 For certain software, especially small-sized software, it

may be hard to divide the required features into parts that

can be incrementally developed and delivered.

 In this case, it becomes difficult to develop a software

incrementally.

 This model gets its name from the appearance of its diagrammatic

representation that looks like a spiral with many loops.

 The exact number of loops of the spiral is not fixed and can vary

from project to project.

 Each loop of the spiral is called a phase of the software process.

 The exact number of phases through which the product is developed

can be varied by the project manager depending upon the project

risks.

 A prominent feature of the spiral model is handling unforeseen risks

that can show up much after the project has started.

 In the spiral model prototypes are built at the start of every phase.

 Each phase of the model is represented as a loop in its diagrammatic

presentation.

 Over each loop, one or more features of the product are elaborated

and analysed and the risks at that point of time are identified and are

resolved through prototyping.

 Based on this, the identified features are implemented.

Risk handling in spiral model
 A risk is essentially any adverse circumstance that might

hamper the successful completion of a software project.

 As an example, consider a project for which a risk can be
that data access from a remote database might be too slow to
be acceptable by the customer.

 This risk can be resolved by building a prototype of the data
access subsystem and experimenting with the exact access
rate.

 If the data access rate is too slow, possibly a caching scheme
can be implemented or a faster communication scheme can
be deployed to overcome the slow data access rate.

 The spiral model supports coping up with risks by providing
the scope to build a prototype at every phase of software
development.

Phases of the Spiral Model
 Each phase in this model is split into four sectors (or quadrants) .

 In the first quadrant, a few features of the software are identified to
be taken up for immediate development based on how crucial it is to
the overall software development.

 Implementation of the identified features forms a phase.

 Quadrant 1:
 The objectives are investigated, elaborated, and analysed.

 Based on this, the risks involved in meeting the phase objectives are
identified.

 In this quadrant, alternative solutions possible for the phase under
consideration are proposed.

 Quadrant 2:
 During the second quadrant, the alternative solutions are evaluated to

select the best possible solution.

 To be able to do this, the solutions are evaluated by developing an
appropriate prototype.

 Quadrant 3:
 Activities during the third quadrant consist of developing and verifying

the next level of the software.

 At the end of the third quadrant, the identified features have been
implemented and the next version of the software is available.

 Quadrant 4:
 Activities during the fourth quadrant concern reviewing the results of

the stages traversed so far (i.e. the developed version of the software)
with the customer and planning the next iteration of the spiral.

 The radius of the spiral at any point represents the cost incurred in the
project so far, and the angular dimension represents the progress made
so far in the current phase.

 In the spiral model of development, the project manager dynamically
determines the number of phases as the project progresses.

 In this model, the project manager plays the crucial role of tuning the
model to specific projects.

 To make the model more efficient, the different features of the software
that can be developed simultaneously through parallel cycles are
identified.

 Advantages/pros and disadvantages/cons of the spiral
model

 The spiral model usually appears as a complex model to
follow, since it is risk driven and is more complicated
phase structure than the other models we discussed.

 It would therefore be counterproductive to use, unless
there are knowledgeable and experienced staff in the
project.

 Also, it is not very suitable for use in the development of
outsourced projects, since the software risks need to be
continually assessed as it is developed.

 For projects having many unknown risks that might show
up as the development proceeds, the spiral model would
be the most appropriate development model to follow.

 It is much more powerful than the prototyping model.

 All these risks are resolved by building a prototype before
the actual software development starts.

