
By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 1.1 Introduction

▪ 1.2 History

▪ 1.3 Features

▪ 1.4 Variables

▪ 1.4.1 Storing Values in Variables

▪ 1.4.2 Assigning Variable Values

▪ 1.4.3 Using Variable Values

▪ 1.4.4 Saving Form Input in Variables

▪ 1.4.5 Understanding Simple Data Types

▪ 1.4.6 Detecting the Data Type of a Variable

▪ 1.4.7 A Note on String Values

▪ 1.4.8 A Note on Null Values

▪ Widely used general purpose scripting language

▪ Used for the web development and can be embedded into HTML.

▪ The main goal of the language is to allow web developers to write dynamically generated web pages
quickly.

▪ The only open-source server-side scripting language.

▪ PHP is available free of charge on the Internet.

▪ PHP support for the MySQL RDBMS, as well as other commercial database systems.

▪ The first version of PHP, PHP/FI, was developed by Rasmus Lerdorf in mid 1995. This version of PHP
had support for some basic functions

▪ PHP/FI 1.0 was followed by PHP/FI 2.0 and in turn quickly updated in 1997 by PHP 3.0

▪ PHP 3.0 is developed by Andi Gutmans and Zeev Suraski.

➢ Support for a wider range of databases, including MySQL and Oracle.

➢ It has extensible architecture

➢ It was installed on hundreds of thousands of web servers.

▪ PHP 4.0 was released in 2003, used a new engine to deliver better performance, greater reliability and
scalability, support for web servers other than Apache.

▪ The current version of PHP, PHP 5.0, offers a completely revamped object model that uses object handles
for more consistent behavior when passing objects around, as well as abstract classes, destructors, multiple
interfaces, and class type hints.

▪ Simplicity: Easy syntax and clearly written manual, helps beginners find it easy to learn.

▪ Portability: Work on different platforms

▪ Speed: PHP scripts run faster than most other scripting languages.

▪ Open Source: PHP is an open source.

▪ Extensible: Enables developers to easily add support for new technologies

▪ XML and Database Support: PHP supports web application sources

1.4.1 Storing Values in Variables

▪ Variables are the building blocks of any programming language to store both numeric and nonnumeric
data.

▪ The contents of a variable can be altered during program execution, and variables can be compared and
manipulated using operators.

▪ PHP supports a number of different variable types such as Booleans, integers, floating point numbers,
strings, arrays, objects, resources, and NULLs.

▪ Every variable has a name, which is preceded by a dollar ($) symbol, and it must begin with a letter or
underscore character, optionally followed by more letters, numbers, and underscores.

Example: $apple, $one_day.

1.4.2 Assigning Variable Values

▪ To assign a value to a variable, use the assignment operator (=).

▪ The value being assigned can be value or another variable or an expression.

Example: <?php $age = $dob + 15; ?>

1.4.3 Using Variable Values

To use a variable value in your script, simply call the variable by name, and PHP will substitute its value at run
time.

Example:
<?php

$a = "10";
echo "The value of a is $a";

?>

1.4.4 Saving Form Input in Variables

Forms have always been one of the quickest and easiest ways to add interactivity to your web site.

Example:

Form Coding:

<html>

<head></head>

<body>

<form action="display.php" method="post">

Enter your message: <input type="text">

<input type="submit" value="Send">

</form>

</body>

</html>

Here is what display.php looks like:

<?php

// retrieve form data in a variable

$a = $_POST['msg’];

// print it

echo "You said: <i>$a</i>";

?>

1.4.5 Understanding Simple Data Types

▪ PHP supports a wide variety of data types.

▪ PHP can automagically determine variable type by the context in which it is being used.

1.4.6 Detecting the Data Type of a Variable

▪ To find out what type a particular variable is, PHP offers the gettype() function, which accepts a variable or
value as argument.

DATA TYPE DESCRIPTION EXAMPLE

Boolean Boolean variable simply specifies a true or false value. $a = true;

Integer An integer is a plain-vanilla number like 75 or 95 $mark = 78;

Floating-point
A floating-point number is typically a fractional number such as 12.5

or 3.149391239129.

$average = 56.89;

String
A string is a sequence of characters. String values may be enclosed in

either double quotes ("") or single quotes ('').
$name = 'Harry';

Example:

<?php

$a = true; // define variables

$mark = 27; // define variables

echo gettype($a); // returns "boolean"

echo gettype($mark); // returns "integer"

?>

▪ PHP also supports a number of specialized functions to check if a variable or value belongs to a specific type

FUNCTION WHAT IT DOES

is_bool() Checks if a variable or value is Boolean

is_string() Checks if a variable or value is a string

is_numeric() Checks if a variable or value is a numeric string

is_float() Checks if a variable or value is a floating point number

is_int() Checks if a variable or value is an integer

is_null() Checks if a variable or value is NULL

is_array() Checks if a variable is an array

is_object() Checks if a variable is an object

1.4.7 A Note on String Values

▪ String values enclosed in double quotes are automatically parsed for variable names; if variable names are
found, they are automatically replaced with the appropriate variable value.

Example:

<?php

$name = 'James’;

$car = 'BMW’;

$sentence = "$name drives a $car"; // This would contain the string "James drives a BMW"

?>

▪ Note that if your string contains quotes, carriage returns, or backslashes, it’s necessary to escape these
special characters with a backslash.

Example:

<?php

$statement = 'It's hot outside'; // will cause an error due to mismatched quotes

$statement = 'It\'s hot outside'; // will be fine

?>

1.4.8 A Note on NULL Values

▪ The NULL data type is “special”: it means that a variable has no value.

▪ A NULL is typically seen when a variable is initialized but not yet assigned a value, or when a variable has
been de-initialized with the unset() function.

Example:

<?php

echo gettype($me); // returns NULL

$me = 'David'; // assign a value

echo gettype($me); // returns STRING David

?>

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 1.5 Statements And Comments

▪ 1.6 Operators

▪ 1.6.1 Using Arithmetic Operators

▪ 1.6.2 Using String Operators

▪ 1.6.3 Using Comparison Operators

▪ 1.6.4 The === Operator

▪ 1.6.5 Using Logical Operators

▪ 1.6.6 Using the Auto-Increment & Auto - Decrement Operators

▪ 1.6.7 Understanding Operator Precedence

▪ A PHP script consists of one or more statements, with each statement ending in a semicolon.

Example:

<?php

// this is a single-line comment

/* and this is a

multiline

comment */

?>

= Assignment

+ Addition

- Subtraction

* Multiplication

/ Division; returns quotient

% Division; returns modulus

. String concatenation

== Equal to

=== Equal to and of the same type

!== Not equal to or not of the same type

<> aka != Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

&& Logical AND

|| Logical OR

Xor Logical XOR

! Logical NOT

++ Addition by 1

-- Subtraction by 1

1.6.1 Using Arithmetic Operators: +, -, *, /, %

1.6.2 Using String Operators: Period(.)

Example:

<?php

$username = 'john';

$domain = 'gmail.com';

$email = $username . '@' . $domain; // combine them using the concatenation operator

?>

Output: john@gmail.com

<?php

$n1 = 101;

$n2 = 5;

$sum = $n1 + $n2; // add

$sub = $n1 - $n2; // subtract

$mul = $n1 * $n2; // multiply

$div = $n1 / $n2; // divide

$mod = $n1 % $n2; // modulus

?>

To perform an arithmetic operation

simultaneously with an assignment, use the

two operators together.

<?php

$a = $a + 10;

$a += 10;

?>

1.6.3 Using Comparison Operators

▪ To test whether two variables are different, use comparison operators. The result of a comparison test is
always a Boolean value (either true or false).

Example:

<?php

$a = 29;

$b = 40;

$result = ($a < $b);

$result = ($a > $b);

$result = ($a <= $b);

$result = ($a >= $b);

$result = ($a == $b);

$result = ($a != $b);

$result = ($a <> $b);

?>

1.6.4 The === Operator

▪ The === operator, enables you to test both for equality and type.

Example:

<?php

$s = '14’;

$n = 14;

$result = ($s == $n); // returns false since the variables are not of the same type

$result = ($s === $n);

?>

1.6.5 Using Logical Operators: (logical AND, logical OR, logical XOR, and logical NOT)

Example:

<?php

$a = 'joe’;

$b = 'try3’;

$result = (($a == 'joe') && ($b == 'try3')); //returns true

$result = (($a == 'joe') || ($b == 'rar')); //returns true

$result = !($a == ‘jeo’); //returns false

$result = (($a == 'joe') xor ($b == 'try3')); //returns false

?>

1.6.6 Using the Auto-Increment and Auto-Decrement Operators

▪ The auto-increment operator is a PHP operator designed to automatically increment the value of the variable it
is attached to by 1. It is represented by a double addition symbol (++).

Example:

1.6.7 Understanding Operator Precedence

▪ When it comes to evaluating operators, the language has its own set of rules about which operators have
precedence over others. Operators on the same line have the same level of precedence.

'!' '++' '--'

'*' '/' '%'

'+' '−' '.'

'<' '<=' '>' '>='

'==' '!=' '===' '!=='

'&&'

'||'

'?' ':'

<?php

$total = 10;

$total++; // $total is now 11

?>

<?php

$total = 10;

$total--; // $total is now 9

?>

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 1.7 Conditional Statements

▪ 1.7.1 Using the If() Statement

▪ 1.7.2 Using the Switch() Statement

▪ 1.7.3 The Ternary Operator

▪ 1.7.4 Nesting Conditional Statements

▪ 1.7.5 Merging Forms and their Result Pages with Conditional Statements

▪ A conditional statement enables you to test whether a specific condition is true or false, and to perform
different actions on the basis of the test result. PHP comes with two basic types of conditional statements,

1.7.1 Using the if() Statement

▪ If the statement evaluates to true, all PHP code within the curly braces

is executed; if not, the code within the curly braces is skipped and

the lines following the if() construct are executed.

Syntax: if()

<?php

if (conditional test)

{

do this;

}

?>

Syntax: if-else()

<?php

if (conditional test)

{

do this;

}

else

{

do this;

}

?>

Syntax: if-elseif-else()

<?php

if (conditional test #1)

{

do this;

}

elseif (conditional test #2)

{

do this;

}

…

elseif (conditional test #n)

{

do this;

}

else

{

do this;

}

?>

1.7.2 Using the switch() Statement

▪ A switch() statement evaluates a conditional expression or decision variable; depending on the result of the
evaluation, an appropriate case() block is executed. If no matches can be found, a default block is executed
instead.

Syntax:

<?php

switch (condition variable)

{

case possible result #1:

do this;

case possible result #2:

do this;

...

case possible result #n:

do this;

case default;

do this;

}

?>

1.7.3 The Ternary Operator

▪ PHP’s ternary operator is represented by a question mark (?). The ternary operator provides shortcut syntax
for creating a single-statement if-else() block.

Example:

<?php

if ($mark >= 35)

{

$msg = 'Pass';

}

else

{

$msg = 'Fail';

}

?>

The above coding can be written as

<?php

$msg = $mark > 10 ? 'Pass' : 'Fail';

?>

1.7.4 Nesting Conditional Statements

▪ To handle multiple conditions, you can “nest” conditional statements inside each other.

Example:

<?php

if ($country == 'India')

{

if ($state == 'Maharashtra')

{

if ($city == 'Bombay')

{

$home = true;

}

}

}

?>

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 1.8 Loops

▪ 1.8.1 Using the While() Loop

▪ 1.8.2 Using the Do() Loop

▪ 1.8.3 Using the For() Loop

▪ 1.8.4 Controlling Loop Iteration with Break and Continue

▪ A loop is a control structure that enables you to repeat the same set of statements or commands over and
over again; the actual number of repetitions may be dependent on a number you specify, or on the
fulfillment of a certain condition or set of conditions.

1.8.1 Using the while() Loop

▪ The first and simplest loop to learn in PHP is the while() loop. With this loop type, so long as the
conditional expression specified evaluates to true, the loop will continue to execute. When the condition
becomes false, the loop will be broken and the statements following it will be executed.

Syntax:

<?php

while (condition is true)

{

do this;

}

?>

1.8.2 Using the do() Loop

▪ In do-while() loop the statements within the loop are executed first, and the condition is checked after.

Syntax:

<?php

do

{

do this;

} while (condition is true)

?>

1.8.3 Using the for() Loop

▪ The for() loop executes a certain set of statements a fixed number of times,

Syntax:

<?php

for (initialize counter; conditional test; update counter)

{

do this;

}

?>

1.8.4 Controlling Loop Iteration with break and continue

Break Continue

The break keyword is used to exit a loop when it

encounters an unexpected situation.

Example:

<?php

for ($i=0; $i<=10; $i++)

{

if ($i == 8)

{

break;

}

echo $i;

}

?>

The continue keyword is used to skip a particular iteration

of the loop and move to the next iteration immediately.

Example:

<?php

for ($i=0; $i<=10; $i++)

{

if ($i == 8)

{

echo $i;

}

else

{

continue;

}

}

?>

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 2.1 Arrays

▪ 2.1.1 Creating An Array

▪ 2.1.2 Modifying Array Elements

▪ 2.1.3 Processing Arrays with Loops

▪ 2.1.4 The Foreach() Loop

▪ 2.1.5 Grouping Form Selections with Arrays

▪ An array is a complex variable that enables you to store multiple values in a single variable.

Example:

<?php

$fruits = array('apple', 'banana', 'plum', 'grape'); // define an array

?>

▪ The array elements are accessed via an index number, with the first element starting at zero.

▪ To access the value grape, use the notation $fruits[3].

Hash or Associative Array:

▪ PHP also enables you to replace indices with user-defined “keys” to create a slightly different type of array.

▪ Keys may be made up of any string of characters, including control characters.

Example:

<?php

// define associative array

$fruits = array('red' => 'apple', 'yellow' => 'banana', 'purple' => 'plum', 'green' => 'grape');

?>

▪ To access the value grape, use the notation $fruits['green'].

2.1.1Creating an Array

▪ To define an array variable, name it using standard PHP variable naming rules and populate it with elements
using the array() function.

Example:

<?php

$fruits = array('apple', 'banana', 'plum', 'grape'); // define an array

?>

An alternative way to define an array

<?php

$fruits[0] = 'apple';

$ fruits[1] = 'banana';

$ fruits[2] = 'plum';

$ fruits[3] = 'grape';

?>

Creating an associative array

<?php

$fruits['red'] = 'apple';

$fruits['yellow'] = 'banana';

$fruits['purple'] = 'plum';

$fruits['green'] = 'grape';

?>

2.1.2 Modifying Array Elements

▪ To add an element to an array, assign a value using the next available index number or key:

<?php

$fruits[4] = 'mango'; // add an element to a numeric array

$fruits[] = 'mango'; // if you don't know the next available index

$fruits['pink'] = 'peach'; // add an element to an associative array

?>

▪ To modify an element of an array, assign a new value to the corresponding scalar variable.

<?php

$fruits[0] = 'blueberry'; // modify an array(apple to blueberry)

?>

▪ To remove an array element, use the array_pop() or array_push() function.

2.1.3 Processing Arrays with Loops

▪ To iteratively process the data in a PHP array, loop over it using any of the loop constructs.

Example:

<?php

$list = array('rose', 'jasmine', 'lily'); // define array

for ($x = 0; $x < sizeof($list); $x++) // loop over it

{

echo "$list[$x]"; // print array elements

}

?>

▪ Here, the for() loop is used to iterate through the array, extract the elements from it using index notation, and
display them one after the other in an unordered list.

▪ Note the sizeof() function is one of the most important and commonly used array functions, and it returns the
size of (number of elements within) the array.

2.1.4 The foreach() Loop

▪ The new loop type introduced in PHP 4.0 for the purpose of iterating over an array is the foreach() loop.

▪ Unlike a for() loop, a foreach() loop doesn’t need a counter or a call to sizeof(); it keeps track of its position in
the array automatically.

foreach() loop with array

<?php

// define array

$list = array('rose', 'jasmine', 'lotus');

foreach ($list as $item) // loop over it

{

echo "$item";

}

?>

foreach() loop with the key-value pairs.

<?php

// define associative array
$flowers = array ('red'=>'rose', 'white'=>'jasmine', 'pink'=>'lotus’);

// iterate over it

foreach ($flowers as $key => $value)

{

echo "a $key named $value";

}
?>

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 2.2 Functions

▪ 2.2.1 Using Array Functions

▪ 2.2.2 Creating User-Defined Functions

▪ 2.2.3 Defining and Invoking Functions

▪ 2.2.4 Using Arguments and Return Values

▪ 2.2.5 Using Arrays with Argument Lists and Return Values

▪ 2.2.6 Defining Global and Local Variables

▪ 2.2.7 Importing Function Definitions

2.2.1 Using Array Functions : the array_keys() and array_ values() functions

Example:

<?php

$menu = array('breakfast' => 'idly', 'lunch' => 'rice', 'dinner' => 'dosa');

$result = array_keys($menu); // returns the array ('breakfast', 'lunch', 'dinner')

$result = array_values($menu); //returns the array ('idly', 'rice', 'dosa')

?>

▪ To check if a variable is an array, use the is_array() function, as in the following:

<?php

$drinks = array('bovanto’, 'pepsi'); // create array

echo is_array($drinks); // returns 1 (true)

?>

▪ You can convert array elements into regular PHP variables with the list() and extract() functions.

Example:

<?php

$fruits = array('apple', 'banana', 'plum', 'grape'); // define an array

list ($fruits1, $fruits2, $fruits3) = $fruits; // extract values into variables

echo $fruits1; // returns "apple"

?>

▪ The extract() function iterates through a hash, converting the key-value pairs into corresponding

variable-value pairs.

Example:

<?php

$fruits = array('red' =>'apple', 'yellow'=>'banana', 'purple'=>'plum', 'green'=>'grape');

extract ($fruits); // extract values into variables

echo $yellow; // returns "banana"

?>

▪ array_push() - To add an element to the end of an existing array.

▪ array_pop() – To remove an element from the end.

▪ array_shift() - To pop an element off the top of the array, you can use the array_shift() function.

▪ array_unshift() - To add elements to the beginning of the array.

Example:

<?php

$students = array('Hari', 'Anu', 'Balu'); // define array

array_shift($students); // remove an element from the beginning

array_pop($students); // remove an element from the end

array_push($students, 'John'); // add an element to the end

array_unshift($students, 'Ronald'); // add an element to the beginning

print_r($students); // array now looks like ('Ronald', 'Anu', 'John')

?>

▪ The explode() function splits a string into smaller components on the basis of a user-specified pattern, and then
returns these elements as an array.

Example:

<?php

$string = 'English Latin Greek Spanish'; // define string

// split on whitespace $languages now contains ('English', 'Latin', 'Greek', 'Spanish')

$languages = explode(' ', $string);

?>

▪ The implode() function creates a single string from all the elements of an array, joining them together with a
userdefined separator. Revising the previous example, you have the following:

<?php

$string = 'English Latin Greek Spanish'; // define string

$languages = explode(' ', $string); // split on whitespace

$newString = implode(" and ", $languages); // returns "English and Latin and Greek and Spanish"

?>

2.2.2 Creating User-Defined Functions

▪ A function is simply a set of program statements that perform a specific task, and that can be called, or
executed, from anywhere in your program.

▪ Functions are a Good Thing for three important reasons:

➢User-defined functions enable developers to extract commonly used pieces of code into separate packages,
thereby reducing unnecessary code repetition and redundancies.

➢Because functions are defined once (but used many times), they are easy to maintain.

➢Because functions force developers to think in abstract terms, they encourage better software design and
help in creating extensible applications.

2.2.3 Defining and Invoking Functions

▪ To understand how custom functions work, examine the following script:

<?php

function display() // define a function

{

echo 'WELCOME';

}

display(); // invoke a function

?>

2.2.4 Using Arguments and Return Values
▪ What is Arguments, argument list, return value?

Example:
<?php

function add($m) // define a function with a single-argument list

{

echo "Value of m = "$m + 10. "; // answer will be 60

}

add(50); // invoke a function pass it a single argument

?>

Example:

<?php

function add($a, $b) // define a function

{

$sum = $a + $b;

return $sum;

}

echo 'The sum of a & b is ' add(10, 50); // invoke a function

?>

2.2.5 Using Arrays with Arguments and Return Values

Example:

<?php

function addDomain($u, $d) // define a function with a single-argument list

{

$result = array(); // create empty result array

foreach ($u as $element)

{

$result[] = $element . '@' . $d;

}

return $result; // return result array

}

$users = array('john', 'jim', 'harry'); // define variables

$newUsers = addDomain($users, 'gmail.com');

?>

2.2.6 Defining Global and Local Variables

<?php

$x = 65;

$y = 125; // define two variables

function addx() // write a function that alters the global $x variable

{

global $x;

$x = $x + 100;

}

function addy() // write a function that alters a local variable

{

$y = 2000;

}

echo "Initial value of x: $x"; // returns 65

addx();

echo "Value of x after addx(): $x"; // returns 165

echo "Initial value of y: $y"; // returns 125

addy();

echo "Value of y after addy(): $y"; // returns 125

?>

2.2.7 Importing Function Definitions

▪ the include() and require() functions..

Example:

<?php

include("/path/to/user/defined/functions.php"); // import file

// invoke functions here

?>

▪ The include() function generates a warning if the file cannot be found, although script processing
continues.

▪ However, the require() function forces a file to be included in the script and generates a fatal error that
stops script processing if the file cannot be found.

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 2.3 Using Files

▪ 2.3.1 Reading and Writing Files

▪ 2.3.1.1 Reading Data From a File

▪ 2.3.1.2 Writing Data to a File

▪ 2.3.2 Testing File Attributes

▪ 2.3.3 Obtaining Directory Listings

2.3.1 Reading and Writing Files

2.3.1.1 Reading Data from a File

▪ To begin with, let’s consider the process of opening a file and reading its contents.

Example:

<?php

$file = '/home/web/projects.txt'; // set file to read

$fh = fopen($file, 'r') or die('Could not open file!’); // open file

$data = fread($fh, filesize($file)) or die('Could not read file!’); //read file contents

fclose($fh); // close file

echo $data; // print file contents

?>

▪ The three basic steps to reading data from a file:

➢Step 1: Open the file(fopen()) and assign it to a file handle(fh). fopen() function, which accepts two
arguments: the name and path to the file, and mode in which the file is to be opened ('r' for read).

➢Step 2: Interact with the file via its handle and extract its contents into a PHP variable. fread()

➢Step 3: Close the file. fclose().

Example:

<?php

$file = '/home/web/projects.txt'; // set file to read

$data = file($file) or die('Could not read file!'); // read file into array

foreach ($data as $line) // loop through array and print each line

{

echo $line;

}

?>

▪ Another way to do this is with the file_get_contents() function, which reads the entire file into a string.

Example:

<?php

$file = '/home/web/projects.txt'; // set file to read

$data = file_get_contents($file) or die('Could not read file!’); // read file into string

echo $data; // print contents

?>

2.3.1.2 Writing Data to a File

▪ The steps used for writing data to a file are same as reading a file but there are two differences:

➢You must fopen() the file in write mode ('w' for write).

➢Instead of using the fread() function to read from the file handle, use the fwrite() function to write to it.

Example:

<?php

$file = '/tmp/dummy.txt'; // set file to write

$fh = fopen($file, 'w') or die('Could not open file!'); // open file

fwrite($fh, 'Hello, file!') or die('Could not write to file'); // write to file

fclose($fh); // close file

?>

▪ An alternative here is the file_put_contents() function, which takes a string and writes it to a file in a single line

of code.

Example:

<?php

$file = '/tmp/dump.txt'; // set file to write

file_put_contents($file, 'Hello, file!') or die('Could not write to file’); //write to file

?>

2.3.2 Testing File Attributes

FUNCTION WHAT IT DOES

file_exists() Returns a Boolean indicating whether the file exists

is_dir() Returns a Boolean indicating whether the specified path is a directory

is_file() Returns a Boolean indicating whether the specified file is a regular file

is_link() Returns a Boolean indicating whether the specified file is a symbolic link

is_executable() Returns a Boolean indicating whether the specified file is executable

is_readable() Returns a Boolean indicating whether the specified file is readable

is_writable() Returns a Boolean indicating whether the specified file is writable

filesize() Gets file size, in bytes

filemtime() Gets last modification time of fil

fileatime() Gets last access time of file

fileowner() Gets file owner

filegroup() Gets file group

fileperms() Gets file permissions

filetype() Gets file type

2.3.3 Obtaining Directory Listings

Example (which lists all the files in the directory /bin):
<?php

$count = 0; // initialize counter

$dir = "/bin"; // set directory name

if (is_dir($dir))

{

if ($dh = opendir($dir)) // open directory and parse file list

{

while (($filename = readdir($dh)) !== false) // iterate over file list & print filenames

{

if (($filename != ".") && ($filename != ".."))

{

$count++;

echo $dir . "/" . $filename . "\n";

}

}

closedir($dh); // close directory

}

}

echo "-- $count FILES FOUND --";

?>

▪ Here, the opendir() function first retrieves a handle to the named directory; this handle serves as the
primary point of contact for all subsequent operations.

▪ The readdir() function then uses the file handle to read the contents of the directory, and return a list of file
names one after another. Once the complete contents of the directory have been retrieved, readdir() returns
a false value.

▪ The closedir() function is used to destroy the directory handle. Notice the manner in which entries for the
current (.) and parent directory (..) are excluded from the list—with an if() conditional statement.

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

2.4 Managing Sessions and Using Session Variables

2.4.1 Creating a Session and Registering Session Variables

2.4.2 Destroying a Session

2.5 Cookies

2.5.1 Storing Data in Cookies

2.5.2 Setting Cookies

2.5.3 Retrieving Cookie Data

2.5.4 Deleting Cookies

2.6 Executing External Programs

▪ HTTP is the protocol on which the Web runs, is a “stateless” protocol.

▪ Consider, for example, the common shopping cart used in web storefronts.

▪ Consequently, what is required is a method that makes it possible to “maintain state,” something that
allows client connections to be tracked and connection-specific data to be maintained.

▪ A common solution to the problem is to use sessions to store information about each client and track its
activities.

▪ This session data is preserved for the duration of the visit, and is usually destroyed on its conclusion.

▪ Client transactions are identified through unique numbers; these identifiers are used to re-create each
client’s prior session environment whenever required.

▪ The session identifier may be stored on the client in a cookie or it may be passed from page to page in the
URL.

2.4.1 Creating a Session and Registering Session Variables

▪ The session_start() function is used to create a client session and generate a session ID.

▪ Any number of session variables can be registered.

▪ In a PHP script, session variables may be registered as key-value pairs in the special $_SESSION associative

array.

Example:

<?php

session_start(); // first page create a session

$_SESSION['username'] = 'college'; // register some session variables

$_SESSION['role'] = 'admin';

?>

▪ On subsequent pages, calls to the session_start() function re-create the prior session environment by restoring

the values of the $_SESSION associative array.

Example:

<?php

session_start(); // second page re-create the previous session

echo $_SESSION['username']; // print the value of the session variable & returns

?>

2.4.2 Destroying a Session

To destroy an extant session use the session_destroy() function to erase session data.

Example:

<?php

session_start(); // re-create session

$_SESSION = array(); // reset session array

session_destroy(); // destroy session

?>

2.5.1 Storing Data in Cookies

▪ Cookies allow web sites to store client-specific information in a file on the client system, and retrieve this

information on demand.

Ground rules of cookies:

1. they can only be read by the site that created them.

2. single domain can set only 20 cookies, and each cookie is limited to a maximum size of 4KB.

3. A cookie usually possesses five types of attributes.

4. Of all the five attributes, only the first is not optional.

ATTRIBUTE WHAT IT DOES

Name Sets the name and value of the cookie

Expires Sets the date and time at which the cookie expires

Path Sets the top-level directory on the domain from which cookie data can be accessed

Domain Sets the domain for which the cookie is valid

Secure Sets a Boolean flag indicating that the cookie should be transmitted only over a secure HTTP connection

2.5.2 Setting Cookies

▪ The setcookie() function, which accepts six arguments: the cookie name, its value, its expiry date, its path and

domain, and a Boolean flag indicating its security status.

▪ Only the first argument is required, others are optional.

▪ The setcookie() function returns true if successful. By checking for this, you can verify if the cookie was sent

to the browser or not.

Example:

<?php

// set a cookie called 'username' with value 'admin' & expiring after 1 day

$ret = setcookie('username', 'admin', mktime()+86400, '/');

if (!$ret) // check if cookie was set & display error if not

{

echo "Unable to set cookie";

}

?>

2.5.3 Retrieving Cookie Data

Aavailable in the $_COOKIE associative array, and its value may be accessed using standard array notation.

Example:

<?php

if ($_COOKIE['username']) // if cookie present, use it else display generic message

{

echo "Welcome back, " . $_COOKIE['username'];

}

else

{

echo "Is this your first time here? Take our guided tour!";

}

?>

2.5.4 Deleting Cookies

To delete a cookie, simply use setcookie() with its name to set the cookie’s expiry date to a value in the past.

Example:

<?php

setcookie('username', ''NULL, mktime()-10000, '/');

?>

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

3.1 Opening Files Using Fopen

3.2 Looping Over a File’s Content with Feof

3.3 Reading Text From a File Using Fgets

3.4 Closing a File

To start working with a file in PHP, you must first open that file,

Syntax:

$filehandle = fopen (filename, mode[, use_include_path [, zcontext]])

Here,

• Filename is the name of the file to open

• Mode indicates how you want to open the file(Table 3.1)

• use_include_path may be set to 1 or TRUE to specify that you want to search for the file in the PHP

include path

• zcontext holds an optional file context(contexts modify or enhance the behavior of the data streams from

and to files).

MODES OPERATIONS

’r’ Open for reading only.

’r+’ Open for reading and writing.

’w’
Open for writing only and truncate the file to zero length. If the file does not exist, attempt to

create it.

’w+’
Open for reading and writing and truncate the file to zero length. If the file does not exist,

attempt to create it

’a’ Open for appending only. If the file does not exist, attempt to create it.

’a+’
Open for reading and writing, starting at the end of the file. If the file does not exist, attempt

to create it.

’x’
Create an open for writing only. If the file already exits, the fopen call will fail by returning

FALSE.

’x+’
Create an open for reading and writing. If the file already exits, the fopen call will fail by

returning FALSE.

Example to open a file for reading:

$handle = fopen (“ /home /file.txt”, “r”);

Example to open a file for writing:

$handle = fopen (“ /home /file.txt”, “w”);

Example to open a file for binary writing:

$handle = fopen (“ /home /file.txt”, “wb”);

Example to open a file for reading:

$handle = fopen (“ /home /file.txt”, “r”);

Example to open URLs on the internet:

$handle = fopen (“ http://www.php.net”, “r”);

Example to escape any backslashes

$handle = fopen (“c: \\data\\file.txt”, “r”);

Example to open a file from different website:

$handle = fopen (“http : //www.superduperbigco.co/file.txt”, “r”);

Example to open files using the FTP protocols:

$handle = fopen (“ftp : //user:booking.com / file.txt”, “w”);

file://///data/file.txt

Example to check whether the file is open or not:

Say that you have a file, file.txt, with below content

If the open operation fails, fopen returns FALSE. You can check if the file was opened as shown below:

<?php

$handle=fopen (“file.txt”, “r”);

If ($handle)

{

Echo “File Opened OK”;

}

?>

Here

Is

Your

Data.

If there are multiple lines in a file and you want to read those lines, one line at a time, loop

over all the lines in the file using a while loop and using feof function.

Example:

<?php

$handle = fopen (“file.txt”, “r”);

While (!feof($handle))

{

….

….

….

}

?>

3.2 LOOPING OVER A FILE’S CONTENT WITH FEOF

You can use fgets function to get a string from a file.

Syntax:

fgets (handle [, length])

This function returns a string of up to length -1 bytes read from the file corresponding to the file handle. If

no length is specified, the length defaults to 1024bytes.

Example:

Here’s how you might read a line of text from the file,file.txt and display the text:

<?php

$handle=fopen(“file.txt”, ”r”);

While(!feof($handle))

{

$text=fgets($handle); //Read the file

echo $text, “
”; //Print the file

}

?>

3.3 READING TEXT FROM A FILE USING FGETS:

Closing the file frees up the resources connected with that file, and avoids conflicts later in your code in

case you recycle file handle variables.

Syntax:

fclose($file handle);

This function returns TRUE if the file was closed successfully, and FALSE otherwise.

Example:

<?php

$handle=fopen(“file.txt”, ”r”);

While(!feof($handle))

{

$text=fgets($handle);

echo $text, “
”;

}

fclose($handle); //Closing the file

?>

3.4 CLOSING A FILE

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

3.5 Reading From a File Character with Fgetc

3.6 Reading a Whole File at Once with File_get_contents

3.7 Reading a File Into an array with File

You can read individual characters from a text file using the fgetc function:

Syntax:

fgetc ($ filehandle);

Example:

<?php

$handle = fopen(“file.txt”, ”r”); //Open the file

$char = fgetc ($handle) // Read an individual character from file.txt

?>

To loop over all the characters in the file, you can use a while loop statement which ends when fgetc

returns FALSE, means there are no more characters to read:

Example:

<?php

$handle = fopen(“file.txt”, “r”); //Open the file

While ($char = fgetc($handle)) // Loop over the characters

{

Echo “$char”; //Print the characters

}

?>

3.5 READING FROM A FILE CHARACTER WITH FGETC

The result of the example is : Here is your data

But the actual content of the file,file.txt, is:

To display the output as it is in file we have to use the newline characters.

Example:

<?php

$handle = fopen (“file.txt”, “r”); //Open a file

While ($char = fgetc($handle)) // Loop over the characters

{

if ($char == “\n”) //Check for the new line

{

$char = “
”;

}

Echo “$char”; //Print the character

}

Fclose($handle); //Close the file

?>

Here

Is

Your

Data.

You can read the entire contents of a file with the file_get_contents function:

Syntax:

File_get_contents (filename [,use_include_path [, context [, offset [, maxlen]]]])

Here,

▪ filename is the name of the file.

▪ use_include_path is set to TRUE if you want to search PHP’s include path.

▪ context is a context for the operation.

▪ offset is the offset into the file at which to start reading.

▪ maxlen is the maximum length of data to read.

Example:

<?php

//Read the entire contents of the file file.txt into the variable $text

$text=file_get_contents(file.txt”);

// Converts all newlines into
 elements using the PHP function str_replace

$fixed_text=str_replace(“\n”, “
”, $text);

// The converted text is echoed to the browser

Echo $fixed_text;

?>

3.6 READING A WHOLE FILE AT ONCE WITH FILE_GET_CONTENTS

Use the file function to read a file into an array all at once; each line becomes an element in the array.

Syntax:

file (filename [, use_include_path_path [, context]])

Here,

▪ Filename is the name of the file you want to read,

▪ use_include_path dhould be set to TRUE if you want to search the PHP include path for the file,

▪ Context for the operation.

This function returns an array or FALSE if the operation failed. This function is useful if you want to write

your own database files.

Example:

Here’s an example, which reads file.txt into an array, $data.

<?php

$data=file(‘file.txt’); // load the contents of the file into the array

foreach ($data as $line) //read each line from $data

{

echo $line , “
”;

}

?>

3.7 READING A FILE INTO AN ARRAY WITH FILE

You can also display line numbers. Here’s how that working :

<?php

$data=file(‘file.txt’);

foreach ($data as $number => $line)

{

echo “Line $number: “ , $line , “
”;

}

?>

You can also open Web pages and read them into arrays using the file function.

<?php

$data=file(‘http://www.php.net’); //reading web page into $data

foreach ($data as $number => $line)

{

echo “Line $number: “ , $line , “
”;

}

?>

Each element in the array still has a new line character at the end of it. If you want to get rid of that new

line character, use can use the rtrim PHP function.

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 3.8 PARSING FILES WITH fscanf

▪ 3.9 PARSING INI FILES WITH parse_ini_file

▪ 3.11 GETTING FILE INFO WITH stat

▪ 3.12 SETTING THE FILE POINTER’S LOCATION WITH fseek

▪ 3.13 COPYING FILE WITH copy

▪ 3.14 DELETING FILES WITH unlink

You can also parse files with the fscanf function:

Syntax:

fscanf (handle, format)

Example:

File Name: students.txt

File Content: Arun Kumar

Hari Bala

Jeya Ganesh

Siva Kumar

<?php

$handle= fopen(“students.txt”,”r”); // Open the file

while ($name=fscanf($handle, “%s\t%s\n”)) // Read and parse a line

{

list ($firstname, $lastname)=$name; // Assign the values

echo $firstname, “ “, $lastname,”
”; //Display the names

}

fclose($handle); // Close the file

?>

3.8 PARSING FILES WITH FSCANF

Much like fscanf, parse_ini_files lets you parse files.

Syntax:

parse_ini_file (filename [, process_sections])

If process_Section parameter to TRUE , you get a multidimensional array, The default is FALSE.

Example:

//This is a sample .ini files

[first_section]

First_color = red

Second _color = white

Third_color = blue

[second_section]

PHP Coding:

<? Php

// read the contents of sample.ini into an array , $array:

$array = parse_ini_file (“sample.ini “);

…….

…….

?>

3.9 PARSING INI FILES WITH PARSE_INI_FILE

Syntax:

stat(filename)

3.11 GETTING FILE INFO WITH STAT

NUMERICAL INDEX TEXT KEYS DESCRIPTIONS

0 dev Device number

1 ino Inode number

2 mode Inode number protection mode

3 nlink Number of links

4 uid User id of owner

5 gid Group id of owner

6 rdev Device type, if inode device

7 size Size in bytes

8 atime Time of last access (Unix timestamp)

9 mtime Time of last modification (Unix Timestamp)

10 ctime Time of last inode change (Unix timestamp)

11 blsize Block size of filesystem I/O

12 blocks Number of blocks allocated

PHP uses file pointers to keep track of where it is in a file, and where the next read or write operation occurs

from.

Syntax

fseek (handle, offset, [start_point])

Here,

▪ handle is the handle of the file to set the file pointer in.

▪ offset is the number of bytes you want to set the pointer to.

▪ start_point indicates a starting point for the pointer, Which is one of these constant:

➢SEEK_SET The beginning of the file

➢SEEK_CUR The current pointer location

➢SEEK_END The end of the file

You can set the offset to negative values.

3.12 SETTING THE FILE POINTER’S LOCATION WITH FSEEK

Syntax:

copy (source, destination)

Here,

▪ source is the name of the source file,

▪ destination is the name of the copy (including pathnames, if applicable).

▪ This function returns TRUE if it was successful, FALSE otherwise.

Example:

<?php

$file = ‘file.txt’;

$copy = ‘copy.txt’;

if (copy($file, $copy))

{

echo “Copied $file.”;

}

else

{

echo “Could not copy $file.”;

}

?>

3.13 COPYING FILE WITH COPY

Syntax:

Unlink (filename [, context])

Here,

▪ filename is the name of the file, and

▪ context is an optional context.

▪ This function returns TRUE if the file was deleted, FALSE otherwise.

Example:

<?php

if(unlink(“copy.txt”))

{

echo “Deleted the file.”;

}

else

{

echo “could not delete the file.”;

}

?>

3.14 DELETING FILES WITH UNLINK

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 3.14 WRITING TO A FILE WITH fwrite

▪ 3.15 READING AND WRITING BINARY FILES

Syntax:

fwrite (handle, string [, length]) // returns the number of bytes written, or FALSE if there was an

error.

Example:

<?php

$handle = fopen(“data.txt”, “w”);

$text = “Here \n is\n the\n text.”;

fwrite($handle, $text);

?>

3.14 WRITING TO A FILE WITH FWRITE

• To check whether the write operation failed:

<?php

$handle = fopen (“data.txt”, “w”);

$text = “Here \n is \n the \n text.”;

if (fwrite($handle, $text) == FALSE)

{

echo “ Cannot write data.txt.”;

}

?>

• When the operation was successful, you

can indicate that to the user like this:

<?php

$handle = fopen(“data.txt”, “w”);

$text = “Here \n is \n the \n text.”;

if (fwrite($handle, $text) == FALSE)

{

echo ”Cannot write data.txt.”;

}

else

{

echo “Created data.txt.”;

}

fclose($handle);

?>

You can pack binary data into strings using the pack function, and unpack data using the unpack function.

Example:

<?php

$number = 512;

$handle = fopen (“data.dat”, “wb”); //Writes the number 512 to a file in binary format

pack (“L”, $number); //Packs the data into long integer format

?>

Here are the formats for the pack function:

➢a - NUL-padded string

➢A - SPACE-padded string

➢h - Hex string, low nibble first

➢H - Hex string, high nibble first

➢c - Signed char

➢C - Unsigned char

3.15 READING AND WRITING BINARY FILES

➢s - Signed short (always 16 bit, machine byte order)

➢S - Unsigned short (always 16 bit, machine byte order)

➢n - Unsigned short (always 16 bit, big endian byte order)

➢v - Unsigned short(always 16 bit, little endian byte order)

➢i - Signed integer(machine –dependent size and byte order)

➢I - Unsigned integer(machine –dependent size and byte order)

➢l - Signed long(always 32 bit, machine byte order)

➢L - Unsigned long(always 32 bit, machine byte order)

➢N - Unsigned long(always 32 bit,big endian byte order)

➢V - Unsigned long(always 32 bit, little endian byte order)

➢f - Float(machine –dependent size and representation)

➢d - Double(machine –dependent size and representation)

➢x - NUL byte

➢X - Back up one byte

➢@ - NUL-fill to absolute position

3.15 READING AND WRITING BINARY FILES

Example:

<?php

$number = 512;

$handle = fopen (“data.dat”, “wb”);

if (fwrite ($handle, pack (“L”, $number)) == FALSE) //Writes data to a file

{

echo “cannot write data.dat.”;

}

else

{

echo “created data.dat. and stored $number.”;

}

fclose($handle); //Close the file

?>

3.15 READING AND WRITING BINARY FILES

To read and display the binary data from the files.

▪ Step1: You open the file for binary reading.

▪ Step2: Use fread to read the binary data, indicating that you want four bytes(the length of a long integer

▪ Step3: Use unpack function to unpack the data into an array with an element under the index “data”

containing a long value.

▪ Step4: Recover the binary data from the array using the key “data”.

▪ Step5: Display that data.

<?php

$handle = fopen(“data.dat”,”rb”); //Open the file

$data = fread($handle,4); //Read the binary data

$array = unpack(“Ldata”,$data); //Unpack the data

$data = $array[“data”]; //Recover & store the binary data from array.

echo ”Read this value from data.dat:”,$data; // Display that data

?>

3.15 READING AND WRITING BINARY FILES

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

▪ 3.16 LOCKING FILES

Syntax:

Flock (handle, operation [, &wouldblock])

Here,

• handle is the handle of the file you want to lock,

• operation is one of these:

➢ LOCK_SH - To acquire a shared lock(reader).

➢ LOCK_EX - To acquire an exclusive lock(writer).

➢ LOCK_UN - To release a lock(shared or exclusive).

• optional third argument is set to TRUE if the lock would block.

This function return TRUE if it got a lock, FLASE otherwise.

3.16 LOCKING FILES

Example:

<?php

$handle =fopen(“data.txt”,”w”); //Open the file

$text = “Here\nis\nthe\ntext.”;

If (flock($handle, LOCK_EX | LOCK_NB)) //Lock the file

{

echo “Locked the file.
”;

if (fwrite ($handle, $text) == FALSE)

{

echo “Cannot write data.txt.
”;

}

else

{

echo”Created data.txt.
”;

}

flock ($handle , LOCK_UN); //Unlock the file

echo ”Unlocked the files.
”;

}

?>

3.16 LOCKING FILES

If you couldn’t get the lock, other code is using the file, and you should let the user know as in below example

<?php

$handle=fopen(“data.txt”,”w”);

$text=”Here\nis\nthe\ntext.”;

If (flock ($handle, LOCK_EX | LOCK_NB))

{

echo “Locked the file.
”;

if (fwrite ($handle, $text) == FALSE)

{

echo “Cannot write data.txt.
”;

}

else

{

echo “Created data.txt.
”;

}

flock ($handle , LOCK_UN);

echo ”Unlocked the files.
”;

}

else

{

echo”could not lock the file.
”;

}

fclose($handle);

?>

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

4.1 EFFECTIVENESS OF MYSQL

4.2 MYSQL TOOLS

4.3 PREREQUISITES FOR MYSQL CONNECTION

4.4 DATABASES AND TABLES

4.4.1 MySQL data types

MySQL has been around for a long time, and is now installed and in use at millions of installations

worldwide. Why do so many organizations and developers use MySQL? Here are some of the reasons:

• Cost: MySQL is open-source, and is usually free to use (and even modify) the software without paying

for it.

• Performance: MySQL is fast (make that very fast).

• Trusted: MySQL is used by some of the most important and prestigious organizations and sites, all of

whom entrust it with their critical data.

• Simplicity: MySQL is easy to install and get up and running.

Mysql: Command-Line Utility : Every MySQL installation comes with a simple command-line utility called

mysql.

MySQL Administrator:

• Server Information displays status and version information about the connected server and client.

• Service Control allows you to stop and start MySQL as well as specify server features.

• User Administration is used to define MySQL users, logins, and privileges.

• Catalogs lists available databases and allows for the creation of databases and tables.

MySQL Query Browser: MySQL Query Browser is a graphical interactive client used to write and execute MySQL

commands.

4.1 EFFECTIVENESS OF MYSQL

4.2 MYSQL TOOLS

▪ MySQL, like all client-server DBMSs, requires that you log in to the DBMS before being able to issue

commands. Login names might not be the same as your network login name; MySQL maintains its own list

of users internally, and associates rights with each.

▪ When you first installed MySQL, you were probably prompted for an administrative login (often named

root) and a password. If you are using your own local server and are simply experimenting with MySQL,

using this login is fine.

▪ In the real world, however, the administrative login is closely protected (as access to it grants full rights to

create tables, drop entire databases, change logins and passwords, and more).

To connect to MySQL you need the following pieces of information:

• The hostname (the name of the computer)this is localhost if connecting to a local MySQL server

• The port (if a port other than the default 3306 is used)

• A valid user name

• The user password (if required)

4.3 PREREQUISITES FOR MYSQL CONNECTION

4.4.1 MySQL data types

4.4 DATABASES AND TABLES

DATA TYPES USED FOR

TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT Integer values

FLOAT Single-precision floating-point values

DOUBLE Double-precision floating-point values

DECIMAL Decimal values

CHAR Fixed-length strings up to 255 characters

VARCHAR Variable-length strings up to 255 characters

TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB Large blocks of binary data

TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT Longer blocks of text data

DATE Date values

TIME Time values or durations

YEAR Year values

DATETIME Combined date and time values

TIMESTAMP Timestamps

ENUM
Fields that must contain one of a set of predefined mutually

exclusive values

SET
Fields that can contain zero, one, or more of a set predefined

values9-

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

4.4.2 CREATING AND MANIPULATING TABLES

4.4.2.1 CREATING DATABASE

4.4.2.2 CREATING TABLES

4.4.2.3 ALTERING TABLES

4.4.2.4 DROPPING DATABASES AND TABLES

4.4.2.1 CREATING DATABASE

▪ To create a database use the CREATE DATABASE command, which creates an empty database.

▪ Database names cannot exceed 64 characters and names that contain special characters or consist

entirely of digits or reserved words must be quoted with the backtick (`) operator.

➢Example: mysql> CREATE DATABASE db;

▪ To select a particular database we use the USE command. Once you select a database with the USE

command, it becomes the default database for all operations.

➢Example: mysql> USE db;

4.4.2 CREATING AND MANIPULATING TABLES

4.4.2.2 CREATING TABLES

Example: mysql> CREATE TABLE stud

(-> regno int(10) UNSIGNED NOT NULL,

-> name varchar(255) NOT NULL default '',

-> year year(4) NOT NULL default '0000',

-> PRIMARY KEY (regno)

->) TYPE=MyISAM;

Adding field modifiers and keys:

• NULL and NOTNULL – To Specify whether the field is allowed to be empty

• DEFAULT - To specify a default value for a field.

• AUTO_INCREMENT – To have MySQL automatically generate a number for a field.

• CHARACTER SET - Can be used for fields that accept string values.

• INDEX – Used to index a field.

• UNIQUE – To specify that values entered into a field must be either unique or NULL.

• PRIMARY KEY – To specify a primary key for the table.

• FOREIGN KEY - To specify a foreign key for a table.

4.4.2 CREATING AND MANIPULATING TABLES

Selecting a table type:A number of table types are available, each with different advantages. Here is a

list:

• MyISAM - The MyISAM format is optimized for speed and reliability, it supports tables in

excess of 4GB in size, and it can be compressed to save space. It is the default table type

• InnoDB - It is the most sophisticated table type available in MySQL. It supports transactions and

foreign keys, and allows multiple simultaneous users to execute SELECT statements; this

improves performance and query response times. InnoDB tables are fully portable between

different operating systems, and include crash recovery features to avoid data corruption or loss.

• HEAP - A HEAP table is stored in memory, making it extremely fast. This format is optimized for

temporary tables and it is rarely used for other purposes. This is because the data in a HEAP table

is available only while the server is running, and is automatically erased when the server shuts

down and the memory is flushed.

4.4.2 CREATING AND MANIPULATING TABLES

• BerkeleyDB - The BerkeleyDB format is one of the more advanced table formats

supported by MySQL. It supports transactions, checkpoints, crash recovery, and page-

level locking. However, it also has certain disadvantages: BerkeleyDB tables are not

easily portable between different operating systems and less memory efficient.

• MERGE - The MERGE table format makes it possible for a collection of MyISAM tables

to be treated as one, by combining them into a single “virtual” table. This table format

makes improving performance or increasing query efficiency possible in certain

situations; however, it can only be used for tables that are completely identical in their

internal structure.

• ISAM - The ISAM format is primarily offered for compatibility with older MySQL

tables. It lacks many of the features of the MyISAM format, cannot handle large tables,

and is more prone to fragmentation.

4.4.2 CREATING AND MANIPULATING TABLES

▪ 4.4.2.3 ALTERING TABLE

To alter the tables the ALTER TABLE command is used. It allows us to add or delete fields, alter field types;

add, remove, or modify keys; alter the table type; and change the table name. This includes the following

➢ Altering Table and Field Names

➢ Altering Field Properties

➢ Adding and Removing Fields and Keys

➢ Altering Table Types

Altering table and field names: To alter a table name, use an ALTER TABLE command with a supplementary

RENAME clause.

Example: mysql> ALTER TABLE stud RENAME TO student;

(OR)

mysql> RENAME TABLE stud TO student;

4.4.2 CREATING AND MANIPULATING TABLES

Table Name : stud

ID NAME M1 M2

111 AAA 7 4

222 BBB 5 6

333 CCC 2 9

We can uses the ALTER TABLE command with a CHANGE clause to modify the name of field from address

to address1.

Example: mysql> ALTER TABLE stud CHANGE m1 mark1 INT(5);

Output:

Altering field properties: You can use the CHANGE clause to alter a field’s type and properties as well.

When you CHANGE a field from one type to another, MySQL will automatically attempt to convert the data in

that field to the new type.

Example: mysql> ALTER TABLE stud CHANGE name age TINYINT(2);

Here in the above example we changed the field “name” defined as VARCHAR(30) to a field “age” with

definition TINYINT(2).

4.4.2 CREATING AND MANIPULATING TABLES

ID NAME Mark1 M2

111 AAA 7 4

222 BBB 5 6

333 CCC 2 9

Adding and removing fields and keys: We can add a new field to a table by including an ADD clause in your

ALTER TABLE command.

Example: mysql> ALTER TABLE stud ADD m3 INT(5) NOT NULL.

Output:

Deleting: To delete an existing field from a table use a DROP clause instead of an ADD clause.

Example: mysql> ALTER TABLE stud DROP m3;

Output:

• Delete a table’s primary key with the DROP PRIMARY KEY clause.

Example: mysql> ALTER TABLE stud DROP PRIMARY KEY;

• Add a new primary key with the ADD PRIMARY KEY clause.

Example: mysql> ALTER TABLE stud ADD PRIMARY KEY (id);

4.4.2 CREATING AND MANIPULATING TABLES

ID NAME M1 M2 M3

111 AAA 7 4 0

222 BBB 5 6 0

333 CCC 2 9 0

ID NAME M1 M2

111 AAA 7 4

222 BBB 5 6

333 CCC 2 9

Altering table types: You can alter the table type by adding a TYPE clause to the ALTER TABLE

command.

Example: mysql> ALTER TABLE stud TYPE = INNODB;

4.4.2.4 DROPPING DATABASES AND TABLE

▪ To delete a database, use the DROP DATABASE command, which deletes the named database and all its

tables permanently.

▪ Similarly, you can delete a table with the DROP TABLE command. Try this out by creating and dropping

a table.

Example: mysql> DROP DATABASE db;

mysql> DROP TABLE stud;

▪ If what you want to empty the table of all records, use the TRUNCATE TABLE command instead,

which internally DROP-s the table, and then re-creates it.

Example: mysql> TRUNCATE TABLE stud;

4.4.2 CREATING AND MANIPULATING TABLES

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

4.4.2 Creating And Manipulating Tables

4.4.2.5 Viewing Database, Table, And Field Information

4.4.3 Insertion, Updation And Deletion Of Rows In Tables

4.4.3.1 Inserting Records

4.4.3.2 Deleting Records

4.4.3.3 Updating Records

4.4.4 Retrieving Data

4.4.2.5 VIEWING DATABASE, TABLE, AND FIELD INFORMATION

You can view all available databases with the SHOW DATABASES command.

Example: mysql> SHOW DATABASES;

You can view available tables in a database with the SHOW TABLES command.

Example: mysql> SHOW TABLES FROM db;

To see the structure of a particular table, use the DESCRIBE command.

Example: mysql> DESCRIBE stud;

4.4.2 CREATING AND MANIPULATING TABLES

INSERTION, UPDATION AND DELETION OF ROWS IN TABLES

Table Name: movies

4.4.3.1 INSERTING RECORDS

//Inserting single value

Example: mysql> INSERT INTO movies (title, year) VALUES ('AAA', 1954);

//Inserting single value but should be in order

Example: mysql> INSERT INTO movies VALUES (NULL, 'AAA', 1954);

//Inserting multiple values

Example: mysql> INSERT INTO movies (title, year) VALUES ('AAA', 1954),

('BBB', 1955), ('CCC', 1941);

4.4.3 INSERTION, UPDATION AND DELETION OF ROWS IN TABLES

ID TITLE YEAR

1 AAA 1954

2 BBB 1959

3 CCC 1970

4 DDD 1975

4.4.3.2 DELETING RECORDS

Example: mysql> DELETE FROM movies;

Output:

Example: mysql> DELETE FROM movies WHERE year > 1960;

Output:

4.4.2 CREATING AND MANIPULATING TABLES

ID TITLE YEAR

ID TITLE YEAR

1 AAA 1954

2 BBB 1959

4.4.3 INSERTION, UPDATION AND DELETION OF ROWS IN TABLES

4.4.3.3 UPDATING RECORDS

Example: mysql> UPDATE movies SET title = 'AAA' WHERE title = 'BBB';

Output:

Example: mysql> UPDATE movies SET mtitle = 'AAA', year = 1958 WHERE id = 4;

Output:

4.4.2 CREATING AND MANIPULATING TABLES

ID TITLE YEAR

1 AAA 1954

2 AAA 1959

3 CCC 1970

4 DDD 1975

ID TITLE YEAR

1 AAA 1954

2 BBB 1959

3 CCC 1970

4 AAA 1958

4.4.3 INSERTION, UPDATION AND DELETION OF ROWS IN TABLES

RETRIEVING DATA

Example: mysql> SELECT * FROM movies;

Output:

Retrieving specific columns:

Example: mysql> SELECT title FROM movies;

Output:

4.4.4 RETRIEVING DATA

ID TITLE YEAR

1 AAA 1954

2 BBB 1959

3 CCC 1970

4 DDD 1975

TITLE

AAA

BBB

CCC

DDD

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

4.4.5 Sorting And Filtering Retrieved Data

4.4.5.1 Filtering Records

4.4.5.2 Sorting Records And Eliminating Duplicates

4.4.5.3 Limiting Results

Table Name: movies

ID TITLE YEAR

1 AAA 1954

2 BBB 1959

3 CCC 1970

4 DDD 1975

4.4.5.1 FILTERING RECORDS

Example: mysql> SELECT year FROM movies WHERE title = 'CCC';

Output:

Filtering Using Operators:

The = symbol previously used is an equality operator, used to test whether the left side of the expression is equal

to the right side. MySQL comes with numerous such operators that can be used in the WHERE clause for

comparisons and calculations.

4.4.5 SORTING AND FILTERING RETRIEVED DATA

YEAR

1970

4.4.5 SORTING AND FILTERING RETRIEVED DATA

YEAR

1970

OPERATOR WHAT IT DOES

Arithmetic operators

+

-

*

/

%

Addition

Subtraction

Multiplication

Division; returns quotient

Division; returns modulus

Logical operators:

NOT aka !

AND aka &&

OR aka ||

XOR

Logical NOT

Logical AND

Logical OR

Exclusive OR

Comparison operators

=

<> aka !=

<=>

<

<=

>

>=

BETWEEN

IN

IS NULL

IS NOT NULL

LIKE

REGEXP aka RLIKE

Equal to

Not equal to

NULL-safe equal to

Less than

Less than or equal to

Greater than

Greater than or equal to

Exists in specified range

Exists in specified set

Is a NULL value

Is not a NULL value

Wildcard match

Regular expression match

4.4.5 SORTING AND FILTERING RETRIEVED DATA

Example: mysql> SELECT year, title FROM movies WHERE year > 1950;

Output:

You can combine multiple conditions by using the AND or OR logical operators.

Example: mysql> SELECT title FROM movies WHERE year >= 1955 AND year <= 1965;

(OR)

mysql> SELECT title FROM movies WHERE year BETWEEN 1955 AND 1965;

Output:

YEAR TITLE

1954 AAA

1959 BBB

1970 CCC

1975 DDD

TITLE

BBB

4.4.5 SORTING AND FILTERING RETRIEVED DATA

The LIKE operator can be used to perform queries using wildcards, and comes in handy when you’re

not sure what you’re looking for. Two types of wildcards are allowed when using the LIKE operator:

the % wildcard, which is used to signify zero or more occurrences of a character, and the wildcard,

which is used to signify exactly one occurrence of a character.

Example: mysql> SELECT title FROM movies WHERE title LIKE '%B%' OR title LIKE '%n%';

Output:
TITLE

BBB

4.4.5.2 Sorting records and eliminating duplicates

Table Name: persons

4.4.5 SORTING AND FILTERING RETRIEVED DATA

ID NAME GENDER DOB

1 FFF F 12.03.2000

2 AAA M 26.09.2002

3 KKK F 18.02.1999

4 CCC M 30.05.2004

5 TTT F 05.01.2006

Example: mysql> SELECT * FROM persons ORDER BY name ASC;

Output:

Here is the same table sorted by date of birth, in descending order:

Example: mysql> SELECT * FROM persons ORDER BY dob DESC;

Output:

4.4.5 SORTING AND FILTERING RETRIEVED DATA

ID NAME GENDER DOB

2 AAA M 26.09.2002

4 CCC M 30.05.2004

1 FFF F 12.03.2000

3 KKK F 18.02.1999

5 TTT F 05.01.2006

ID NAME GENDER DOB

5 TTT F 05.01.2006

4 CCC M 30.05.2004

2 AAA M 26.09.2002

1 FFF F 12.03.2000

3 KKK F 18.02.1999

To eliminate duplicate records in a table, add the DISTINCT keyword.

Example: mysql> SELECT DISTINCT gender FROM persons;

Output:

4.4.5.3 Limiting Results

You can limit the number of records returned by MySQL with the LIMIT clause,

Example: mysql> SELECT name FROM persons LIMIT 0,4;

Output:

Example: mysql> SELECT name FROM persons ORDER BY dob LIMIT 0,2;

Output:

4.4.5 SORTING AND FILTERING RETRIEVED DATA

GENDER

F

M

NAME

AAA

CCC

FFF

KKK

TTT

NAME

AAA

FFF

KKK

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

4.5 Advanced Filtering

4.5.1 Data Manipulation Functions

4.5.2 Aggregate Functions

4.5.2.1 SQL Aggregate Functions

4.5.2.2 Aggregates On Distinct Values

4.5.2.3 Combining Aggregate Functions

4.5 ADVANCED FILTERING

DATA MANIPULATION FUNCTIONS

MySQL comes with over 100 built-in functions to help you perform calculations and process the

records in a result set. These functions can be used in a SELECT statement, either to manipulate field

values or in the WHERE clause.

You can calculate the number of record using COUNT() function, as in the following:

Example: mysql> SELECT COUNT(*) FROM persons;

Output:

Example: mysql> SELECT name, LENGTH(name) FROM persons;

Output:

4.5 ADVANCED FILTERING

COUNT(*)

5

NAME LENGTH(NAME)

TTT 3

CCC 3

AAAA 4

FFF 3

K 2

You can use the DATE() function to format date and time values into a human-readable form.

Example: mysql> SELECT name, DATE_FORMAT(dob, '%W %d %M %Y') FROM persons;

Output:

You can even use functions in the WHERE clause of a SELECT statement.

Example: mysql> SELECT name FROM persons WHERE YEAR(NOW()) - YEAR(dob) >100

4.5.1 DATA MANIPULATION FUNCTIONS

NAME DOB

FFF Wednesday12 March 2000

AAA Tuesday 2 September 2002

CCC Monday 30 May 2004

KKK Sunday 18 February 1999

TTT Friday 05 January 2006

4.5 ADVANCED FILTERING

AGGREGATE FUNCTIONS

It is often necessary to summarize data without actually retrieving it all, and MySQL provides special

functions for this purpose. Using these functions, MySQL queries are often used to retrieve data for

analysis and reporting purpose. Examples of this type of retrieval are

• Determining the number of rows in a table (or the number of rows that meet some condition or

contain a specific value)

• Obtaining the sum of a group of rows in a table

• Finding the highest, lowset, and average values in a table column (either for all rows or for

specific rows)

4.5.2 AGGREGATE FUNCTIONS

FUNCTION DESCRIPTION

AVG() Returns a column’s average value

COUNT() Returns the number of rows in a column

MAX() Returns a column’s highest value

MIN() Return a column’s lowest value

SUM() Return the sum of a column’s value

4.5.2.1 SQL AGGREGATE FUNCTIONS

Table Name: stud

The AVG () Function: AVG () can be used to returns the average value of all columns or of specific

columns or rows.

Example: mysql> SELECT AVG (m1) AS mark1 FROM stud;

Output:

4.5.2 AGGREGATE FUNCTIONS

Reg.no Name M1 M2 M3

1 AAA 67 92 77

2 BBB 89 57 98

3 CCC 39 38 45

4 DDD 54 57 67

Mark1

62.25

The COUNT () function

▪ Use count (*) to count the number of rows in a table, whether columns contain values or NULL

values.

▪ Use count(column0to count the number of rows that have values in a specific column, ignoring

NULL values.

Example: mysql>SELECT COUNT (*) AS No_Of_Student FROM stud;

Output:

The MAX () function

MAX () returns the highest value in a specified colum.MAX() requires that the column name be

specified, as seen here:

Example: mysql> SELECT MAX (m2) AS maximum_mark FROM stud;

Output:

4.5.2 AGGREGATE FUNCTIONS

No_Of_Stud

4

Maximum_mark

92

The MIN() Function

Example: mysql> SELECT MAX (m2) AS minimum_mark FROM stud;

Output:

The SUM() Function

Example: mysql> SELECT SUM(m3) As total_mark FROM stud;

Output:

Example: mysql> SELECT SUM(m3) As total_mark FROM stud where id>=3

Output:

4.5.2 AGGREGATE FUNCTIONS

Minimum_mark

38

Total_Mark

287

Total_Mark

112

4.5.2.2 AGGREGATES ON DISTINCT VALUES

The five aggregate functions can all be used in two ways:

➢To perform calculations on all rows, specify no arguments, or specify no arguments at all (because

All is the default behavior).

➢To only include unique values, specify the DISTINCT arguments.

Example: mysql> SELECT SUM(DISTINCT m2) As total_mark FROM stud;

Output:

4.5.2.3 COMBINING AGGREGATE FUNCTIONS

Example: mysql>SELECT COUNT() AS no_of_students,

MIN(m1) AS minimum_mark,

MAX (m2) AS maximum-mark,

AVG(m3) AS average_mark

FROM stud;

4.5.2 AGGREGATE FUNCTIONS

Total_Mark

187

No_of_Students Minimum Mark Maximum Mark Average Mark

4 39 92 71.75

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

4.6 SET OPERATORS

UNION

UNION ALL

INTERSECT

MINUS

MySQL supports few Set operations which can be performed on the table data. These are used to get

meaningful results from data stored in the table, under different special conditions.

The different types of SET operations are:
• UNION

• UNION ALL

• INTERSECT

• MINUS

Consider the tables for the examples :

Table Name: First Table Name: Second

4.6 SET OPERATORS

ID Name

1 Abhi

2 Adam

ID Name

2 Adam

3 Chitra

UNION Operation

UNION is used to combine the results of two or more SELECT statements. However it will eliminate

duplicate rows from its result set. In case of union, number of columns and datatype must be same in

both the tables, on which UNION operation is being applied.

4.6 SET OPERATORS

4.6.2 UNION ALL

This operation is similar to Union. But it also shows the duplicate rows.

4.6 SET OPERATORS

4.6.3 INTERSECT

Intersect operation is used to combine two SELECT statements, but it only returns the records which

are common from both SELECT statements. In case of Intersect the number of columns and datatype

must be same.

NOTE: MySQL does not support INTERSECT operator.

4.6 SET OPERATORS

ID Name

2 Adam

MINUS

The Minus operation combines results of two SELECT statements and return only those in the final

result, which belongs to the first set of the result.

4.6 SET OPERATORS

By

Dr.N.N.Krishna Veni,

Assistant Professor,

Holy Cross Home Science College,

Tuticorin

Programming with

PHP & MySQL
II Year(CS) - SSCS3A

4.7FULL TEXT SEARCHING

4.7.1 Using Full-Text Searching

4.7.2 Enabling Full-Text Searching Support

FULL TEXT SEARCHING

4.7.1 Using Full-Text Searching

In order to perform full-text searches, the columns to be searched must be indexed and constantly re-

indexed as data changes. MySQL handles all indexing and reindexing automatically after table

columns have been appropriately designated. After indexing, SELECT can be used with Match() and

Against() to actually perform the searches.

Table Name:stud

4.7 FULL TEXT SEARCHING

Reg.No NAME Year Remark

111 AAA 2000
Good Nature.

Use to be brave in tough situation.

222 BBB 1994
Brave boy.

Helping mind.

333 CCC 1999
Want to improve in studies.

Good in sports.

4.7.2 Enabling Full-Text Searching Support

Generally, full-text searching is enabled when a table is created. The CREATE TABLE statement

accepts a FULLTEXT clause, which is a comma-delimited list of the columns to be indexed. The

following CREATE statement demonstrates the use of the FULLTEXT clause

Example: mysql> CREATE TABLE stud

(-> regno int(10) UNSIGNED NOT NULL,

-> name varchar(255) NOT NULL default '',

-> year year(4) NOT NULL default '0000',

->remark text NULL

-> PRIMARY KEY (regno)

->) TYPE=MyISAM;

4.7 FULL TEXT SEARCHING

4.7.3 Performing Full-Text Searches

After indexing, full-text searches are performed using two functions:

➢Match() to specify the columns to be searched

➢Against() to specify the search expression to be used.

Example: SELECT remark FROM stud WHERE Match(remark) Against('brave');

Output:

• Use Full Match() Specification: The value passed to Match() must be the same as the one used in

the FULLTEXT() definition. If multiple columns are specified, all of them must be listed (and in

the correct order).

• Searches Are Not Case Sensitive: Full-text searches are not case sensitive, unless BINARY mode

is used.

4.7 FULL TEXT SEARCHING

Remark

Brave boy.

Use to be brave in tough situation.

The truth is that the search just performed could just as easily have used a LIKE clause, as seen here:

Example: SELECT remark FROM stud WHERE remark LIKE '%brave%';

Output:

This SELECT retrieves the same two rows, but the order is different. Neither of the two SELECT

statements contained an ORDER BY clause.

The LIKE statement returns data in no particularly useful order. But the full-text searching returns

data ordered by how well the text matched. Both rows contained the word brave, but the row that

contained the word brave as the first word ranked higher than the row that contained it as the

fourth word.

This is important. An important part of full-text searching is the ranking of results. Rows with a

higher rank are returned first.

4.7 FULL TEXT SEARCHING

Remark

Use to be brave in tough situation.

Brave boy.

Example: SELECT remark Match(remark) Against('brave') AS rank FROM stud;

Output:

.

4.7 FULL TEXT SEARCHING

Remark Rank

Good Nature.

Use to be brave in tough situation.

0

1.5

Brave boy.

Helping mind.

1.6

0

Want to improve in studies.

Good in sports.

0

0

4.7.4 Ranking Multiple Search Term

If multiple search terms are specified, those that contain the most matching words will be ranked

higher than those with less (or just a single match).

4.7.5 Using Query Expansion

When query expansion is used, MySQL makes two passes through the data and indexes to perform

your search:

➢First, a basic full-text search is performed to find all rows that match the search criteria.

➢Next, MySQL examines those matched rows and selects all useful words.

4.7 FULL TEXT SEARCHING

Example: A simple full-text search, without query expansion:

SELECT remark FROM stud WHERE Match(remark) Against('nature');

Output:

Example: A simple full-text search, with query expansion:

SELECT remark FROM stud WHERE Match(remark) against('nature' WITH QUERY

EXPANSION);

This time two rows were returned. The first contains the word nature and is thus ranked highest. The

second row has nothing to do with nature, but as it contains one word that is also in the first row (good)

it was retrieved, too. As you can see, query expansion greatly increases the number of rows returned,

but in doing so also increases the number of returns that you might not actually want.

4.7 FULL TEXT SEARCHING

Remark

Good Nature.

Good in sports.

Remark

Good Nature.

4.7.6 Boolean Text Searche

MySQL supports an additional form of full-text searching called boolean mode. In Boolean mode you

may provide specifics as to

▪ Words to be matched

▪ Words to be excluded (if a row contained this word it would not be returned, even though other

specified words were matched)

▪ Ranking hints (specifying which words are more important than others so they can be ranked higher)

▪ Expression grouping

▪ And more

Example:

Input SELECT remark FROM stud WHERE Match(remark) Against('good' IN BOOLEAN

MODE);

Output:

.

4.7 FULL TEXT SEARCHING

Remark

Good Nature.

Good in sports.

To match the rows that contain good but not any word with nature, the following can be used:

Example:

Input SELECT remark FROM stud WHERE Match(remark) Against('good nature*' IN

BOOLEAN MODE);

Output:

This time only one row is returned. Again, the word good is matched, but this time nature* instructs

MySQL to explicitly exclude any row that contains nature* (any word beginning with nature, including

nature, which is why one of the rows was excluded).

.

4.7 FULL TEXT SEARCHING

Remark

Good in sports.

Table 4.2. Full-Text Boolean Operators

.

4.7 FULL TEXT SEARCHING

Privilege Description

+ Include,word must be present.

- Exclude, word must not be present.

> Include, and increase ranking value.

< Include, and decrease ranking value.

()
Group words into subexpressions (allowing them to be included, excluded, ranked,

and so forth as a group).

~ Negate a word's ranking value.

* Wildcard at end of word.

“ ”
Defines a phrase (as opposed to a list of individual words, the entire phrase is

matched for inclusion or exclusion).

Example:

➢SELECT remark FROM stud WHERE Match(remark) Against('+good +nature"' IN BOOLEAN

MODE);

This search matches rows that contain both the words good and nature.

➢ SELECT remark FROM stud WHERE Match(remark) Against('good nature' IN BOOLEAN

MODE);

Without operators specified, this search matches rows that contain at least one of rabbit or bait.

.

4.7 FULL TEXT SEARCHING

Example:

➢ SELECT remark FROM stud WHERE Match(remark) Against('>good <sports' IN BOOLEAN

MODE);

▪ Analysis Match both good and sports, increasing the rank of the former and decreasing the

rank of the latter.

➢ SELECT remark FROM stud WHERE Match(remark) Against('+good +(<sports)' IN BOOLEAN

MODE);

▪ This search matches the words safe and combination, lowering the ranking of the latter.

.

4.7 FULL TEXT SEARCHING

Programming with PHP & MySQL

II Year(CS) - SSCS3A

UNIT – 5

By

 Dr.N.N.Krishna Veni,

 Assistant Professor,

 Holy Cross Home Science College,

 Tuticorin

PHP with MySQL

5.1 Working MySQL with PHP

PHP has included support for MySQL since version 3.x The MySQL API built into PHP is

designed to accomplish four primary goals:

■ Manage database connections

■ Execute queries

■ Process query results

■ Provide debugging and diagnostic information

To illustrate these functions, let’s create a simple MySQL database table, and then use PHP to

connect to the server, retrieve a set of results, and format them for display on a web page.

Example:

CREATE TABLE items (itemID int(11) NOT NULL, itemName varchar(255) NOT NULL'', itemPrice

float NOT NULL , PRIMARY KEY (itemID)) TYPE=MyISAM;

INSERT INTO items VALUES (1, 'P', '3');

INSERT INTO items VALUES (2, 'K', '2');

INSERT INTO items VALUES (3, 'C', '14');

INSERT INTO items VALUES (4, 'P1', '1');

INSERT INTO items VALUES (5, 'C1', '4');

Item id Item Name Item price

1 P 3

2 K 2

3 C 14

4 P1 1

5 C1 4

Now, to do the same thing using PHP, create the following PHP script:

<html> <head></head>

<body>

<?php

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to connect!');

mysql_select_db('db2') or die ('Unable to select database!');

$query = 'SELECT * FROM items';

$result = mysql_query($query) or die ('Error in query: $query. ' . mysql_error());

if (mysql_num_rows($result) > 0)

{

echo '<table width=100% cellpadding=10 cellspacing=0 border=1>';
echo'<tr><td>ID</td><td>Name</td><td>Price</td></tr>';

while($row = mysql_fetch_row($result))

{

echo '<tr>';

echo '<td>' . $row[0] . '</td>';

echo '<td>' . $row[1] . '</td>';

echo '<td>' . $row[2] . '</td>';

echo '</tr>';

}

echo '</table>';

}

else

{

echo 'No rows found!';}

mysql_free_result($result);

mysql_close($connection);

 }

?>

</body>

</html>

Using PHP to perform and process a MySQL query involves several steps, which the following

explains.

Step 1: To begin communication with the MySQL database server, you first need to open a connection

to the server by the mysql_connect() function. The mysql_connect() function requires three

parameters: the host name, username and password of MySQL to get access. If the function is

successfully connected, it returns a link identifier, as $connection. This identifier is used throughout the

script when communicating with the database.

Step 2: The next step is to select a database for use with the mysql_select_db() command, and then

send the server a query through the mysql_query() function.

Step 3: The result is assigned to the variable $result. The number of rows in the result set is obtained

from the mysql_num_rows() function. Individual field values can then be accessed as array elements.

Step 4: Each result set occupies some amount of memory. Once processing is completed, use the

mysql_free_result() function to free up the used memory for other purposes. And close the connection

with a call to mysql_close().

5.2 DATABASE CONNECTIVITY

In PHP, connections to the MySQL server are opened via the mysql_connect() function, which

accepts three different arguments: the hostname, username and the corresponding password of the

MySQL server.

Example:

<?php

$connection = mysql_connect('mydbserver', 'guest', 'pass');

if ($connection)

{

echo 'Connected!';

}

else

{

echo 'Could not connect!';

}

?>

If a connection can be established, the mysql_connect() function returns a link identifier, which

is used by other functions to communicate with the server. If a connection cannot be established, the

function returns false and, an error message indicating the cause of failure will be printed to the output

device

Example:

<?php

$connection = @mysql_connect('mydbserver', 'guest', 'pass');

echo $connection ? 'Connected!' : 'Could not connect!';

?>

It’s good programming practice to explicitly close the MySQL connection once you finish using

it. This is accomplished by calling the mysql_close() function, which closes the link and returns the used

memory to the system.

Example:

<?php

$connection = @mysql_connect('mydbserver', 'guest', 'pass');

if ($connection)

{

 mysql_close($connection);

}

?>

5.2.1 Using Persistent Connections

When dealing with high-traffic sites, the constant opening and closing of MySQL server

connections can often prove a drain on resources. In such situations, it is possible to obtain a reduction

in overhead, as well as some performance gain, by replacing the call to mysql_connect() with a call to

mysql_pconnect().

The mysql_pconnect() function opens a “persistent” connection to the server. Such a persistent

connection does not automatically end when the script creating it ends; rather, it remains available for

use by other scripts requesting an equivalent connection to the MySQL server.

Example:

<?php

$connection = mysql_pconnect('mydbserver', 'myuser', 'mypass') or die ('Unable to connect!');

echo $connection ? 'Persistent connection open!' : 'Could not open persistent connection!';

?>

5.3 USAGE OF MYSQLCOMMANDS IN PHP

Once a connection has been opened, the next step is to select a database for use. This is done

with the mysql_select_db() function, as given below

<?php

mysql_select_db('mydb'),

?>

Once the database has been selected, it becomes possible to execute queries on it. In PHP,

MySQL queries are handled via the mysql_query() function,

Example:

<?php

$result = mysql_query('SELECT * FROM items WHERE price < 10.00');

?>

Depending on the type of query, the return value of mysql_query() differs:

■ If the query is a data-retrieval query—for example, a SELECT or SHOW query—then mysql_query()

returns a resource identifier pointing to the query’s result set, or false on failure. The resource identifier

can then be used to process the records in the result set.

■ If the query is a data manipulation query—for example, an INSERT or UPDATE query—then

mysql_query() returns true if the query succeeds, or false on failure. The result-set processing functions

outlined in the next section can now be used to extract data from the return value of mysql_query().

5.4 PROCESSING RESULT SETS OF QUERIES

The return value of a successful mysql_query() invocation can be processed in a number of

different ways, depending on the type of query executed.

5.4.1 Queries Which Return Data

For SELECT-type queries, a number of techniques exist to process the returned data. They are

mysql_fetch_row()

mysql_fetch_assoc()

mysql_fetch_object()

mysql_fetch_row():

The simplest is the mysql_fetch_row() function, which returns each record as a numerically

indexed PHP array. Individual fields within the record can then be accessed using standard PHP-array

notation. The following example illustrates this:

<?php

// open connection to MySQL server

 $connection = mysql_connect('localhost', 'guest', 'pass') ↵ or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

 $query = 'SELECT itemName, itemPrice FROM items'; $result = mysql_query($query) or die ('Error

in query: $query. ' . mysql_error());

// check if records were returned

if (mysql_num_rows($result) > 0)

{

// iterate over record set // print each field

while($row = mysql_fetch_row($result))

{

 echo $row[0] . " - " . $row[1] . "\n";

}

}

else

{

 // print error message

 echo 'No rows found!';

}

// once processing is complete // free result set

mysql_free_result($result);

// close connection to MySQL server

 mysql_close($connection);

 ?>

Notice, in the previous listing, how the call to mysql_fetch_row() is wrapped in a

mysql_num_rows() conditional test. The mysql_num_rows() function returns the number of records in

the result set and comes in handy to check whether the query returned any records at all.

mysql_fetch_assoc():

mysql_fetch_assoc() function is used to represent each row as an associative array of field-value

pairs, a minor variation of the previously used technique.

Example:

<?php

 // open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT itemName, itemPrice FROM items';

$result = mysql_query($query) or die ('Error in query: $query. ' . mysql_error());

if (mysql_num_rows($result) > 0) // check if records were returned

{

while($row = mysql_fetch_assoc($result)) // iterate over record set

{

echo $row['itemName'] . " - " . $row['itemPrice'] . "\n"; // print each field

}

}

else

{

echo 'No rows found!'; // print error message

}

mysql_free_result($result); // once processing is complete // free result set

mysql_close($connection); // close connection to MySQL server

?>

mysql_fetch_object():

In this case, field values are accessed using the field name instead of the index. There’s also the

mysql_fetch_object() function, which returns each row as an object, with properties corresponding to

the field names. Here is an example:

Example:

<?php

// open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to connect!');

// select database for use

mysql_select_db('db2') or die ('Unable to select database!');

// create and execute query

$query = 'SELECT itemName, itemPrice FROM items';

$resu lt = mysql_query($query) or die ('Error in query: $query. ' . mysql_error());

if (mysql_num_rows($result) > 0) // check if records were returned

{

while($row = mysql_fetch_object($result)) // iterate over record set

{

 echo $row->itemName . " - " . $row->itemPrice . "\n"; // print each field

 }

}

else

{

echo 'No rows found!'; // print error message

}

mysql_free_result($result); // once processing is complete // free result set

mysql_close($connection); // close connection to MySQL server

?>

In this case, each $row object is created with properties corresponding to the field names in that row.

Row values can be accessed using standard $object-> property notation.

5.4.2 Queries That Alter Data

You can also use PHP’s MySQL API for queries that don’t return a result set, for example,

INSERT or UPDATE queries. Consider the following example, which demonstrates by asking for user

input through a form, and then INSERT-ing that data into the database:

<html>

<head> </head>

<body>

<?php

if (!$_POST['submit'])

{

?>

<form action="<?=$_SERVER['PHP_SELF']?>" method="post">

Item name: <input type="text" name="name">

Item price: <input type="text" name="price">

<input type="submit" name="submit">

</form>

<?php

}

else

{

$name = (trim($_POST['name']) == '') ? die ('ERROR: Enter a name') :

mysql_escape_string($_POST['name']);

$price = (trim($_POST['price'] == '') || !is_numeric($_POST['price'])) ? die ('ERROR: Enter a

price') : $_POST['price'];

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to connect!');

mysql_select_db('db2') or die ('Unable to select database!');

$query = "INSERT INTO items (itemName, itemPrice) VALUES ('$name', '$price')";

$result = mysql_query($query) or die ("Error in query: $query. " . mysql_error());

echo 'New record inserted with ID ' . mysql_insert_id() . '<br \>';

echo mysql_affected_rows() . ' record(s) affected';

mysql_close($connection);

}

?>

</body>

</html>

The previous example has three new functions:

■ The mysql_escape_string() function escapes special characters in the user input, so it can be safely

entered into the database. If the magic_quotes_gpc setting in your PHP configuration file is enabled, you

might need to first call stripslashes() on the user input before calling mysql_escape_string(), to avoid

characters getting escaped twice.

■ The mysql_insert_id() function returns the ID generated by the previous INSERT query (useful only

if the table into which the INSERT occurs contains an AUTO_INCREMENT field).

■ The mysql_affected_rows() function returns the total number of rows affected by the last operation.

5.5 HANDLING ERRORS

PHP’s MySQL API also comes with some powerful error-tracking functions that can reduce

debugging time. The following example, deliberate error in the SELECT query string:

<?php

 // open connection to MySQL server

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to connect!');

mysql_select_db('db2') or die ('Unable to select database!'); // select database for use

$query = 'SELECT FROM items'; // create and execute query

$result = mysql_query($query);

if(!$result) // if no result

{

echo 'MySQL error ' . mysql_errno() . ': ' . mysql_error(); // print MySQL error message

mysql_close($connection);

 }

?>

The mysql_errno() function displays the error code returned by MySQL if there’s an error in

your SQL statement, while the mysql_error() function returns the actual error message. Turn these both

on, and you’ll find they can significantly reduce the time you spend fixing bugs

5.6 USING ANCILLARY FUNCTIONS

In addition to the general functions, PHP’s MySQL API comes with a number of ancillary

functions that may be used to find out more about the databases and tables on the MySQL server or to

obtain server status information.

List of functions:

mysql_get_server_info() Returns the version number of the MySQL server

mysql_get_proto_info() Returns the version number of the MySQL protocol

mysql_get_client_info() Returns the version number of the MySQL client

mysql_get_host_info() Returns information on the MySQL host

mysql_thread_id() Returns the thread ID for the current MySQL connection

mysql_list_dbs() Returns a list of databases available on the MySQL server

mysql_list_tables()
Returns a list of tables available in a specified MySQL

database

mysql_list_fields()
Returns information about the fields of a specified MySQL

table

mysql_stat() Returns status information about the MySQL server

mysql_info() Returns information about the last executed query

mysql_db_name()

Returns a name of a database from the list generated by

mysql_list_dbs()

mysql_tablename()

Returns a name of a table from the list generated by

mysql_list_tables()

mysql_ping() Tests the server connection

 Example:

<html>

 <head>

<basefont face="Arial">

</head>

<body>

 <?php

 // open connection

 $connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to connect!');

 // get list of available databases and tables

 $dbs = mysql_list_dbs($connection);

 echo 'Available databases and tables:'; echo '';

 for ($x=0; $x<mysql_num_rows($dbs); $x++)

 {

 $db = mysql_db_name($dbs, $x); // print database name

echo '' . $db . '';

// for each database, get list of tables within it

$tables = mysql_list_tables($db, $connection);

echo '';

for ($y=0; $y<mysql_num_rows($tables); $y++) // iterate over table list

{

 echo '' . mysql_tablename($tables, $y) . ''; // print table name

 }

 echo '';

}

// get version and host information

echo "Client version: " . mysql_get_client_info() . "
";

echo "Server version: " . mysql_get_server_info() . "
";

echo "Protocol version: " . mysql_get_proto_info() . "
";

echo "Host: " . mysql_get_host_info() . "
";

echo "Thread ID: " . mysql_thread_id() . "
";

$status = mysql_stat(); // get server status

echo $status;

mysql_close($connection); // close connection

 ?>

</body> </html>

The below figure illustrates what the output might look like. The first part of this script is fairly

simple: it runs the mysql_list_dbs() function to get a list of databases, and then it iterates over the list

and runs the mysql_list_tables() function to retrieve the list of tables inside each. Next, the

mysql_get_*_info() functions provide the client version number, the MySQL version number, the

version number of the special MySQL clientserver protocol used for communication between the two,

the current hostname, how it is connected to the MySQL server, and the connection thread ID.

Finally, new in PHP 4.3.0, is the mysql_stat() function, which returns a string containing status

information on the MySQL server (including information on server uptime, open tables, queries per

second, and other statistical information).

5.7 SETTING INPUT CONSTRAINTS AT THE DATABASE LAYER

When it comes to maintaining the integrity of your database, a powerful tool is provided by the

database system itself: the capability to restrict the type of data entered into a field or make certain fields

mandatory, using field definitions or constraints.

➢ Using the NULL Modifier

➢ Using the UNIQUE Modifier

➢ Using Field Data Types

5.7.1 Using the NULL Modifier

MySQL enables you to specify whether a field is allowed to be empty or if it must necessarily

be filled with data, by placing the NULL and NOT NULL modifiers after each field definition. This is

a good way to ensure that required fields of a record are never left empty, because MySQL will simply

reject entries that do not have all the necessary fields filled in.

Example: mysql> CREATE TABLE products (-> id int(4), -> name varchar(50) ->);

 mysql> INSERT INTO products VALUES (NULL, NULL);

Output of the above query

mysql> SELECT * FROM products;

ID NAME

NULL NULL

Now, look what happens if you make the name field mandatory

Example: mysql> CREATE TABLE products (-> id int(4), -> name varchar(50) NOT NULL ->);

 mysql> INSERT INTO products VALUES (NULL, NULL);

Output of the above query

 ERROR 1048: Column 'name' cannot be null

Thus, while the NOT NULL modifier can help reduce the incidence of empty or incomplete

records in a database, it is not a comprehensive solution. It needs to be supplemented by application-

level verification to ensure that empty strings are caught before they get to the database.

5.7.2 Using the UNIQUE Modifier

Using MySQL’s built-in validation mechanisms has an important advantage: it makes it easy to

perform certain types of validation that would be lengthy and time-consuming to write code for.

Consider, for example, the situation of ensuring that a particular field contains only unique values.

MySQL makes it possible to do this, simply by attaching a UNIQUE modifier to the field.

Example: mysql> CREATE TABLE users (-> username VARCHAR(50) NOT NULL UNIQUE->);

 mysql> INSERT INTO users (username) VALUES ('tim');

 mysql> INSERT INTO users (username) VALUES ('jon');

Now, if you attempt to enter another record with the value tim in the username field, MySQL

will reject your entry with an error:

 mysql> INSERT INTO users (username) VALUES ('tim');

 ERROR 1062: Duplicate entry 'tim' for key 1

If you had to perform this type of validation at the application layer, the only way to do it would
be to select all the records in the table, scan the username field to obtain a list of all values present in it,

and check the user’s input against each to eliminate duplication. Needless to say, this is expensive, both

in terms of CPU cycles and time. Fortunately, the UNIQUE modifier renders it unnecessary.

5.7.3 Using Field Data Types

Checking for mandatory and unique values are just small pieces of a much bigger picture. It’s

also necessary to make sure that the data being entered is of the correct type—after all, you don’t want

string values in a numeric field or decimal values in a timestamp field. To this end, MySQL also requires

you to specify the type of data a particular field can hold at the time of defining a table. Input that does

not match the named data type is automatically converted into a more acceptable, though incorrect,

value.

Example: mysql> CREATE TABLE items (-> id INT(2) NOT NULL, -> price INT(4) NOT NULL ->

);

 mysql> INSERT INTO items (id, price) VALUES (1, 'five');

 mysql> SELECT * FROM items;

id price

1 0

In this case, because the price field has been constrained to only store integers, the string five has

been converted into a 0 and saved. Of course, this isn’t perfect. Sure, you were able to avoid storing a

string instead of a number, but you also simply replaced one problem with another: the field now contains

a 0 instead of a valid price.

5.8 VALIDATING INPUT AT THE APPLICATION LAYER

When it comes to catching errors in user input, the best place to do this is at the point of entry—

the application itself. That’s why a good part of this chapter is devoted to showing you techniques you

can use to catch common input errors and ensure that they don’t get into your database.

➢ Checking for Required Values

➢ Restricting the Size of Input Data

➢ Checking the Type of Input Data

➢ Checking for Illegal Input Values

➢ Validating Dates

➢ Validating Multiple-Choice Input

➢ Matching Patterns

5.8.1 Checking for Required Values

One of the most common mistakes a novice programmer makes is forgetting to check for required

field values. This can result in a database with numerous empty records, and these empty records can,

in turn, affect the accuracy of your queries.

Example: mysql> CREATE TABLE users (-> username varchar(8) NOT NULL DEFAULT '', ->

password varchar(8) NOT NULL DEFAULT ''->) TYPE=MyISAM;

When inserting a record into this table, values must be specified for both username and password

fields . Here’s a script that enforces these constraints at the application level:

$username = (!isset($_POST['username']) || trim($_POST['username']) == "") ? die ('ERROR: Enter a

username') : mysql_escape_string(trim($_POST['username']));

$password = (!isset($_POST['password']) || trim($_POST['password'] == "")) ? die ('ERROR: Enter a

password') : mysql_escape_string(trim($_POST['password']));

$connection = mysql_connect('localhost', 'guest', 'pass') or die ('Unable to connect!');

$query = "INSERT INTO users (username, password) VALUES ('$username', '$password')";

$result = mysql_query($query) or die ("Error in query: $query. " . mysql_error());

mysql_close($connection);

The isset() function checks whether the named variable is set or not, and returns false if the

variable has either not been set or assigned a NULL value. The trim() function removes the white space

around the ends of the string, and then compares it with an empty string ("") to ensure that it contains at

least one character.

If both tests return true, then the script proceeds to connect to the database and insert the record

into the table. If either one returns false, the user clearly has not entered the corresponding form value,

and the script terminates immediately, without even attempting to open a connection to the database.

5.8.2 Restricting the Size of Input Data

MySQL enables you to control the length of a particular field by adding a size modifier to the

field data type. Now, the way MySQL works, values greater than the specified length are automatically

truncated, with no notification or exception generated to let the user know about the change. This is

disturbing, because it means that user data can easily get corrupted without the user’s awareness.

Example: mysql> CREATE TABLE news (-> id INT (10) NOT NULL, -> title VARCHAR(50) NOT

NULL ->);

And here’s the PHP script that replicates this constraint in a form:

$title = trim ($_POST['title']);

if (strlen($title) > 50)

{

die ('ERROR: Title contains more than 50 characters');

}

To see this in action, try entering a string greater than 50 characters in the title field. When you

submit the form, you’ll see an error message, and the data will not be saved to the database until you

correct the error. The code behind this is straightforward—just pass the user input to PHP’s strlen()

function, which returns the length of the string. You can then wrap this in an if() test to ensure that only

strings under the specified limit pass muster.

5.8.3 Checking the Type of Input Data

An important test of user input involves checking the data type of input values against the

database’s expectations, and raising an error in the event of a mismatch.

Example: mysql> CREATE TABLE items (-> itemID INT(11) NOT NULL AUTO_INCREMENT, -

> itemName VARCHAR(255) NOT NULL DEFAULT '',) TYPE=MyISAM;

Now, if you attempt to enter a string into any of the INT or FLOAT fields, MySQL will simply

convert that string to a 0. At first glance, this might seem like an intelligent thing to do, because it avoids

having to deal with error messages. However, it isn’t, because the database now contains incorrect data.

What is needed, then, is a way to verify the data type of a value before allowing it to be entered into the

database. A useful PHP function to accomplish this is the is_numeric() function, demonstrated in the

next

Example:

// check the itemName field

$itemName = (!isset($_POST['itemName']) || trim($_POST['itemName']) == "") ? die ('ERROR: Enter

the item name') : mysql_escape_string(trim($_POST['itemName']));

// check the itemSPrice field

if(!isset($_POST['itemSPrice']) || trim($_POST['itemSPrice']) == "")

{

die ('ERROR: Enter the item\'s selling price');

}

In this example, the first test is to ensure that the field is not empty. If this is true, the second test

involves checking whether the value entered is a numeric string, with the is_numeric() function. Only if

the user input passes both tests is it allowed to proceed into the database. In addition to the is_numeric()

function, you may also use PHP’s character type extension to further test input before saving them to

your database.

The important functions supported by this extension are listed in the below table.

Function What It Does

ctype_alnum() - Check if a value contains only alphanumeric characters.

ctype_alpha() - Check if a value contains only alphabetic characters.

ctype_digit() - Check if a value contains only numeric characters.

ctype_print() - Check if a value contains only printable characters.

ctype_space() - Check if a value contains only white space characters.

5.8.4 Checking for Illegal Input Values

 An application’s particular business logic often demands custom validation routines of its own.

To illustrate this, considerthe example of a form that asks the user to enter a positive two-digit number.

Here, it is necessary to write a validation test to check if the user’s input falls between 10 and 99 (both

inclusive) and to display an error if it doesn’t.

Example:

// check for presence of number

$num = (!isset($_POST['num']) || trim($_POST['num']) == "" || !is_numeric($_POST['num'])) ? die

('ERROR: Enter a number') : trim($_POST['num']);

// check for number range

if ($num < 10 || $num > 99)

{

die ('ERROR: Enter a number between 10 and 99');

}

This type of custom validation can play an important role in avoiding common errors, such as

the dreaded division-by-zero error.

5.8.5 Validating Dates

PHP hasa checkdate() function that provides an easy way to validate user-provided date values.

Example:

// check date

if (!checkdate($_POST['month'], $_POST['day'], $_POST['year']))

{

die ('ERROR: Enter a valid date');

}

5.8.6 Validating Multiple-Choice Input

Checkboxes and drop-down lists are an important component of web forms, and it’s often

necessary to include validation for these controls in your PHP applications. Normally, the user’s

selections from these controls are submitted to the form processor in the form of an array, and it’s

necessary to use PHP’s array functions to validate them.

Example:

// check the "hobbies" field for valid values

$hobbies = ((sizeof($_POST['hobbies']) < 3) ? die ('ERROR: Please select at least 3 hobbies') :

implode(',', $_POST['hobbies']));

}

Thus, it is convenient to use PHP’s array functions—namely, the sizeof() function, which returns

the number of elements in an array—to check whether the required number of options was selected.

Matching Patterns

Fortunately, PHP comes with these tools built in, with its support for regular expressions. Regular

expressions (regex) are a powerful tool used in pattern-matching and substitution.. Depending on

whether or not there’s a match, appropriate action can be taken and appropriate program code executed.

Regular expressions play an important role in the decision-making routines of web applications, and in

complex find-and-replace operations.

The application needs to enforce the following constraints:

■ The name may contain only uppercase (A–Z) or lowercase characters (a–z), with a minimum of three

and a maximum of eight.

■ The password may contain only lowercase characters (a–z) or integers (0–9), with a minimum of five

and a maximum of eight.

■ The e-mail address must conform to the standard user@domain format

5.9 FORMATTING QUERY OUTPUT WITH CHARACTER

It’s essential that you know how to manipulate this string data and adjust it to fit the requirements

of your application user interface. Both PHP and MySQL come equipped with numerous string

manipulation functions.

 ➢ Concatenating String Values

➢ Padding String Values

➢ Dealing with Special Characters

➢ Altering String Case

Concatenating String Values

It’s pretty simple—just string together the variables you want to concatenate using the PHP

concatenation operation, a period (.). Concatenating fields from a MySQL result set is equally simple—

just assign the field values to PHP variables and concatenate the variables together in the normal manner.

To see how this works, consider the following table:

mysql> SELECT * FROM users;

username fname Lname

Xxx AA A

Yyy BB B

zzz CC C

MySQL comes with two built-in functions—CONCAT() and CONCAT_WS()—which can be used to

glue fields together within the SQL query itself.

Padding String Values

The PHP trim() function, used to strip leading and trailing white space from string values prior

to testing them for validity or inserting them into a database. However, PHP also comes with the

str_pad() function, which does just the reverse: it pads strings to a specified length using either white

space or a user-specified character sequence.

PHP code that demonstrates padding them:

Example: echo str_pad($row->name, 30, ' ', STR_PAD_LEFT) . '
';

The str_pad() function takes three parameters: the variable to be padded, the size it should be

padded to, and the character to use for padding. By default, the function pads the string on the right side.

You can alter this default, however, by passing one of the constants STR_PAD_LEFT or

STR_PAD_BOTH to the function as an optional fourth parameter. The PHP str_pad() function is

functionally equivalent to MySQL’s RPAD() and LPAD() functions, which pad a string from the right

and left, respectively.

Example: mysql> SELECT RPAD(name, 20,'_'), LPAD(name, 20, '_') FROM ingredients LIMIT 0,2;

Altering String Case

If you need case manipulation, just reach for PHP’s string manipulation API again. Four useful

functions are here: strtolower(), which converts all characters in a string to lowercase; strtoupper(),

which converts all characters to uppercase; ucfirst(), which converts the first character of a string to

uppercase, and the useful ucwords(), which converts the first character of all the words in a string to

uppercase.

Example:

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo '<td>' . ucfirst($row->fname) . ' ' . ↵

ucfirst($row->lname) . '</td>';

echo '<td>' . ucwords($row->addr) . '
' . ↵

strtoupper($row->city) . '</td>';

echo '<td>' . strtolower($row->email) . '</td>';

echo '</tr>';

}

mysql> SELECT CONCAT_WS('\n', UCASE(addr), UCASE(city)) AS address, LCASE(email) AS

email FROM customers;

Dealing with Special Characters

When it comes to displaying large text blocks on a web page, a PHP developer must grapple with

a number of issues. Special characters need to be protected, white space and line breaks must be

preserved, and potentially malicious HTML code must be defanged. PHP comes with a number of

functions designed to perform just these tasks.

if (mysql_num_rows($result) > 0)

{

while($row = mysql_fetch_object($result))

{

echo '' . $row->title . '';

echo '<p />'; echo $row->data;

echo '<p />';

}

The revised listing uses three new functions.

■ The htmlentities() function takes care of replacing special characters like ", &, <, and > with their

corresponding HTML entity values. This function is useful to defang user-supplied HTML text and

render it incapable of effecting the display or functionality of your web page. This function also

translates these special characters and prevents them from being interpreted as HTML code by the

browser.

■ Next, the wordwrap() function wraps text to the next line once it reaches a particular, user-defined

size, by inserting the /n newline character at appropriate points in the text block (these are then converted

into HTML line breaks by the next function). This can be used to set artificial boundaries on the width

of your text display area, and to maintain the integrity of your page layout.

■ Finally, the nl2br() function automatically preserves newlines in a text block, by converting them to

HTML
 elements. This makes it possible to reproduce the original formatting of the text when it

is displayed

5.10 Formatting Numeric Data

Just as you can massage string values into a number of different shapes, so, too, can you format

numeric data. Both PHP and MySQL come with a full set of functions to manipulate integer and floating-

point numbers, and to format large numeric values for greater readability.

Using Decimal and Comma Separators

When it comes to formatting numeric values in PHP, there are only two functions:

number_format() and sprintf(). Of these, the former is easier to understand and use, so let’s begin with

that function. The number_format() function is used to display large numbers with comma and decimal

separators. It can be used to control both the visibility and the appearance of the decimal digits, as well

as the character used as the thousands separator.

Example:

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo '<td>' . $row->accountNumber . '</td>';

echo '<td>' . $row->accountName . '</td>';

echo '<td align=right>' . ↵

number_format($row->accountBalance, 2, '.', ',') . '</td>';

echo '</tr>';

}

Common function used to perform this type of number formatting is the sprintf() function, which

enables you to define the format in which data is output.

Example:

<?php

// returns 1.6666666666667

print(5/3);

?>

As you might imagine, that’s not very friendly. Ideally, you’d like to display just the significant

digits of the result, so you’d use the sprintf() function, as in the following:

<?php

// returns 1.67

echo sprintf("%1.2f", (5/3));

?>

The PHP sprintf() function is similar to the sprintf() function that C programmers are used to. To

format the output, you need to use field templates, templates that represent the format you’d like to

display.

Template - What It Represents

%s - string

%d - decimal number

%x - hexadecimal number

%o - octal number

%f - float number

Examples of sprintf():

<?php

// returns 00003

echo sprintf("%05d", 3);

// returns $25.99

echo sprintf("$%2.2f", 25.99);

// returns ****56

printf("%'*6d", 56);

?>

5.11 Formatting Dates and Times

We can use PHP’s mktime() function to obtain a UNIX timestamp for any arbitrary date/time

value. However, because the timestamp returned by mktime() does not resemble traditional date/time

displays, it is usually necessary to format this timestamp, so it is understandable to humans. This is

particularly true in web applications, where dates and times are frequently displayed in human-readable,

rather than machine-readable, form. To this end, PHP offers the date() function, which accepts two

arguments: one or more format specifiers, which indicates how the timestamp should be formatted, and

the timestamp itself.

Example:

echo date("h:i a d M Y", mktime());

echo date("d F Y", mktime(0, 0, 0, 04, 27, 2003));

echo date("H:i", mktime());

Specifier - What It Means

d - Day of the month; numeric

D - Day of the week; short string

F - Month of the year; long string

H - Hour; numeric 12-hour format

H - Hour; numeric 24-hour format

i - Minute; numeric

l - Day of the week; long string

L - Boolean indicating whether it is a leap year

m - Month of the year; numeric

M - Month of the year; short string

s - Seconds; numeric

T - Timezone

Y - Year; numeric

z - Day of the year; numeric

Example:

while($row = mysql_fetch_object($result))

{

echo '<tr>';

echo "<td>$row->name</td><td>" . ↵

date("d M Y", $row->dob) . "</td>";

echo '</tr>';

}

MySQL isn’t far behind either: the RDBMS comes with powerful DATE_ FORMAT() and

TIME_FORMAT() functions to manipulate the display of date and time values until they’re exactly the

way you want them. As with the PHP date() function, format specifiers are used to control the appearance

of the output.

Below is the DATE_FORMAT() and TIME_FORMAT() functions.

Symbol - What It Means

%a - Short weekday name (Sun, Mon . . .)

%b - Short month name (Jan, Feb . . .)

%d - Day of the month

%H - Hour (01, 02 . . .)

%I - Minute (00, 01 . . .)

%j - Day of the year (001, 002 . . .)

%m - 2-digit month (00, 01 . . .)

%M - Long month name (January, February)

%p - AM/PM

%r - Time in 12-hour format

%S - Second (00, 01 . . .)

%T - Time in 24-hour format

%w - Day of the week (0,1 . . .)

%W - Long weekday name (Sunday, Monday . . .)

%Y - 4-digit year

Here are some examples demonstrating these in action:

1) mysql> SELECT DATE_FORMAT(NOW(), '%W, %D %M %Y %r');

 Thursday, 18th November 2004 12:07:55 PM

2) mysql> SELECT DATE_FORMAT(19980317, '%d/%m/%Y');

 17/03/1998

3) mysql> SELECT DATE_FORMAT("20011215101030", "%H%i hrs on %a %d %M

%y");

1010 hrs on Sat 15 December 01

4) mysql> SELECT TIME_FORMAT(19690609140256, '%h:%i %p');

 02:02 PM

Using the DATE_FORMAT() function, you can perform date formatting within your SQL query

itself, without needing PHP’s date() function.

Function - What It Does

DAYOFWEEK() - Returns a number (1 to 7) representing the day of the week for a date

DAYOFMONTH() - Returns the day component (1 to 31) of a date

DAYOFYEAR() - Returns a number (1 to 366) representing the day of the year for a date

DAYNAME() - Returns the weekday name for a date

HOUR() - Returns the hour component (0–23) of a time

MINUTE() - Returns the minute component (0–59) of a time

MONTH() - Returns the month component (1 to 12) for a date

MONTHNAME() - Returns the month name for a date

QUARTER() - Returns the quarter (1–2) in which a date falls

WEEK() - Returns the week number (0–53) for a date

YEAR() - Returns the year component (1000–9999) of a date

Here are some examples of these in action:

mysql> SELECT DAYOFMONTH(NOW()), DAYOFYEAR('1979-01-02');

mysql> SELECT DAYNAME(NOW()), MONTHNAME(NOW()), YEAR(NOW());

