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UNIT |

RELATIONS

1. INTRODUCTION TO RELATION

In Mathematics, the expressions such as ,,is less than®,,.is parallel ©0°,,is
perpendicular ©are relations.

Relations may exist between objects of the same set or between objects of
two or more sets.

2. BINARY RELATION

Let A and B be two non-empty sets.

Then any subset of R of the Cartesian product AxB is called a binary relation
R from A to B.

Ifa, b €R,thenaisrelatedto b and is written as aRb.

Theseta € A: a, b € R forsome beB is called the domain of R and
Is denotedby D p R .

Thesetb € B: a, b € R forsome a€A is called the range of R and is
denotedby R p R .

Example 1.1
i. LetA =369,B = 4812,
ThenR = 3,4,3,8,3,12 isarelation fromAto B ii.
LetA = 2,3,4,B = a, b

ThenAxB=2,a ,2,b ,3,a ,3,b ,4,a ,4,b
IfR=2,a ,3,b ,thenRCAXB and

R is a relation from A to B.

ii. LetA = 234,and B =3,4,56,7.



If R is a relation from A to B defined by
(a,b)e R such that a divides b (with zero remainder) then,
R= 24,2,6,3,3,3,6,4,4

Example 1.2:

Letd = 1,2,3,4and B = 3,4,5,6
Find the elements of each relation R stated below. Also, find the domain and range

of R.

. aRb if and only if a<b
ii.  aRbifandonlyifaand b are both odd numbers.

Solution:

. R=13,14,15,16,23,24,25,26,3,4,35,3,6,4,5,4,6

Domainof R =Dg(R) = 1234 and Range of R =

RR(R) = 3,4,5,6
ii. R = 13,15,33,35 Rrg(R)= 13 andRz(R) = 3,5
Example 1.3:

Let A={1,2,9} and B={1,3,7}
Find the elements of each relation R stated below. Also, find the domain and range

of l?isf relation R is 'equal to' then
(ii) relation R is 'less than'
(iii) relation R is 'greater than'

Solution:
(1) R={(1,1),(3,3)}
Dom(R) ={1,3}
Ran(R) = {1,3}



(ii) R={(1,3),(1,7),(2,3),(2,7)}
Dom(R) = {1,2}
Ran(R) = {3,7}

(iii) R={(2,1),(9,1).(9,3),(9,7)}
Dom(R) = {2,9}
Ran(R) ={1,3,7}

Example 1.4:

Find the number of distinct reactions from a set A to Set B

Solution:

Let the number of elements in A and Bbe m and n respectively.
A x B has mn elements.

-~ Power set of A x B has 2™ elements.

(i.e.,) A x B has 2™distinct Subsets.

Every subset of A x B is a relation from A to B.

Thus the number of distinct relations from A to B is 2™.

Note:
Let R be a relation defined on a set A consisting of n elements.
A X A contains 2" elements.

- There exists 2" binary relations on a set A.

1.3 CLASSIFICATION OF RELATIONS

In several applications of computer science and applied mathematics, we
generally treat relations on a set A rather than relations from A to B. Furthermore,
these relations often satisfy certain properties. The various types of relations are
explained in this section.



Reflexive Relation

The relation Rdefined on a Set A is said to be reflexive if aRa (or (a,a) eR)

for all aeA.

Example:

. LetR be arelationon4 = 1,2,3,4
Then therelationR =1,1,2,2,3,3,4,4 is reflexive. ii.
LetA=a,b,c andR = a,a ,b,b ,c,c

Then R is a reflexive relation on A.

Symmetric Relation:

A relation R defined on a set A is said to be symmetric ifaRb = bRa for all

a,beA.
I.e., Rissymmetric onAif(a,b)e R = (b, a)€eR.

Example:

(i) LetA={1,2,3}and R={(2,2),(2,3),(3,2)}.
Then R is symmetric, since both(2,3) ¢ R and (3,2) € R.
(ii) LetR be a relation defined by ,.is perpendicular oon the set of all
straight lines.
If line a is perpendicular to b, then b is perpendicular to a.
Then R is a symmetric relation.

Antisymmetric Relation

A relation R defined on a set A is said to be antisymmetricif(a,b) R and
azb,then (b,a) €R forall a,b,eA

Example:
Let R be a relation defined on A={1,2,3} by (a,b)eR if a <b, for a,beA.

Then R = {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}-



Here, (1,2) € R, but (2,1) ¢ R.
~The relation R is antisymmetric.
Transitive Relation
Arelation R defined on a set A is said to be transitive, if
(a,b) €R and (b,c) € R =(a,c)e R for all a,b,ce
A

i.e., aRb and bRc =aRc for all a,b,ceA.

Exgmplel et4 = 1,23andR = 1,1,2,2,2,3,3,2,3,3.
Then R is transitive, since 2R2and 2R3 = 2R3
also, 2R3and 3R2 = 2R 2.

i, Let R be arelationon A= a, b, c,d given by
R = a,a ,b,c ,c,b ,d,d
Here (b,c) eRand (c,b) eRbut (b,b) ¢
R. So, the relation R is not transitive.

iii.  Let Adenote the set of straight lines in a plane and R be a relation onA
defined by “is parallel to”.
Leta, b, c be three lines. If a is parallel to b and b is parallel to c, then ais

parallel to c. Hence R is a transitive relation on A.

Equivalence Relation

Arelation R on a set A is said to be an equivalence relation, if R is
reflexive, symmetric and transitive.
Example:
Let R be a relation definedon A= a, b, ¢ by

R = aa ,a,b ,b,a ,b,b b,c ,a,c ,c,a ,c,b ,
(c,c)

Then R is an equivalence relation.



Associative Relation

Relations from A to B are subsets of A x B. Two relations from Ato B can
also be associated in the same way as two sets can be associated.

LetA= a, b, ¢ andB= a, b, c,d

Let Ry ={(a,a),(b,b),(c,c)} and R, = {(a,a),(a,b),(a,c),(a,d)}
The associative relations of A and B are

Ru=R1U R2;={(a,a),(b,b),(c,c),(a,b),(a,c),(a,d)}

RN =Rin R;={(a,a)}

Ri2= Ri- R, ={(b,b),(c,c)}

Rz = R2- R1={(a,b),(a,c),(a,d)}

Example 1.5:

Let A=1,2,3 . Check whether the following relations are reflexive, symmetric,
anti symmetric or transitive.

i. R=1,1,2,2,3,3,1,3,1,2
i. R=1,1,2,2,1,3,3,1
. R=1,1,2,2,3,3,1,2,2,1,2,3,3,2

Solution:

I The given relation R is reflexive and transitive.
R is not symmetric Since  (1,3) e R but (3,1) ¢ Rand
(1,2)e R but(2,1)¢ R
i. The relation R is symmetric.
R is not reflexive, since (3,3) € R .
R is not transitive since (3,1) ¢ R and (1,3) € R but (3,3) ¢
iii. R. ThegivenrelationR is reflexive and symmetric.
R is not transitive since (1,2) ¢ R and (2,3) € R but (1,3) ¢
R.



Example 1.6:

Let Z” be the set of all non-zero integers and R be the relation on Z'such that
(a,b)ER if a is the factor of b i.e., a/b. Investigate R for reflexive, symmetric, anti

symmetric or transitive.

Solution:

()2 Vae€ez

*

~ R is reflexive.

(i)  a/b does not imply b/a

~ R Is not symmetric.

(iii) 1T 4/4 and -4/4 are true then 4#-4
~ R is not anti symmetric.

(iv) If a/b and b/c then a/c.

~ R is transitive.

Example 1.7:

Let Z denote the set of integers and the relation R in Z be defined by aRbiff

a-b is an even integer.Then show that R is an equivalence relation.
Solution:
(i)  a-a=0 which is an even integer
aRaVva € z

~ R isreflexive.



(i) LetaRb
=a- b isaeven integer
= —(a-b) is an even integer
= b -a isan even integer
~bRa
I.e,,aRb=b R a
~ R is symmetric.

(il) LetaRb and bRc
aRb=a-b is an even integer
bRc=b-c is an even integer.

a-c = (a-b)+(b-c)

~(a-c) is an even integer.
l.eaRc

aRb and bRc=aRc

~R Is transitive

R is reflexive symmetric and transitive.

Thus R is an equivalence relation.

Example 1.8:

Let A be the set of all triangles in the Euclidean plane and R is the relation on A
definedby ,.ais similar to bThen show that R is an equivalence relation on A.
Solution:

. Every triangle is similar to itself.



I.e, the relation R is reflexive.
i. If a is similar to b then b is similar to a.
i.eaRb=bRa

~ Ris Symmitric.
iii. Ifaissimilarto b and b is similar to c, then a is similar to c.
~ R is transitive.
R is reflexive, symmetric and transitive.

~ R is an equivalence reaction

4. COMPOSITION OF RELATION

Let R; be a relation from A to B and R, be a relation from B to C.

The composition of R; and R, denoted by R,0 R is the relation from Ato C
defined as

R.o0Ri=a,c :a,b e Riand b,c eR,forsomebeB
Example 1.9:
Find the composition of the Relations.
Ri=1,2,1,6,2,4,3,4,3,6,3,8and R,=2,
x ,4,y ,4,z ,6,z ,8,x
Solution:

R20R1: 1Ix IllZ Izly I2IZ I3Iy I3IZ I(3’x)

5. INVERSE OF RELATION
Let R be a relation from A to B. The inverse of R is denoted by R, and it is

a relation from B to A defined by

R'=b,a :a,b €R



Example 1.10:
LetA=2,3,4,B=3,4,5,6,7, and
R=2,5,2,6,3,3,3,7,4,4 . Findthe inverse of R.

Solution:
The inverse of the relation R is
R-1=5,2,62,33,7,3,4,4

Example 1.11:

If a relation R is transitive, then prove that its inverse relation R is also
transitive.

Solution:
Let (a,b) eR and (b,c)eR™.
= (b,a) eR and (c,b)eR
= (c,b) eR and (b,a)eR
= (c,a) eR [Since R is transitive]
= (a,c) eR™?

~. R istransitive.

1.6 REPRESENTATION OF RELATIONS ON ASET

Arelation on a set Ais a relation from A to A. i.e., a relation on a set A can
be treated as a subset of A x A.

Example 1.12:

LetA={1,2,3,4}. Let R ={(a,b) : a divides b}. Find the ordered pairs
which exists in R,

Solution:

R={(11).,(1.2),(1,3),(1,4).(2.2),(2,4),(3,3).(4.4)}



1.7 CLOSURE OPERATIONS ON RELATIONS

Let R be relation on a set A. The relation R may or may not possess the
relational properties such as reflexivity, symmetry, and transitivity. If R does not
possess any property, to fulfill R with a property, we should add new pairs to R.
The smallest relation R1 on A which contains R and possesses the required

property is called the closure of the relation R.

1.17.1 Reflexive Closure

Let R be a relation defined on a set A.

Relation Ryis called reflexive closure of R if Rgis the smallest relation

containing R, having the reflexive property.

l.e., RR= R U A, where Ay= {(a, a): a€e A} is the diagonal or equality

relation on A.

In other words, the reflexive closure of R can be obtained by adding to R

all pairs of the form (a, a), a€A, not already in R.

Example 1.13:
Find the reflexive closure of the relation R = {(1, 1), (1, 2), (2, 1), (3,2)} on
the set A= {1,2,3}.
Solution:

This relation is not reflexive.

The relation can be made reflexive, by adding (2, 2) and (3, 3) to R.
Hence the reflexive closure of R is {(1,1), (2,2), (3,3),(1,2), (2,1), (3,2)}

Example 1.14:

Find the reflexive closure of the relation R = {(a, a), (a, b), (b, ¢), (c, a)} on the



set A={a,b,c}.

Solution:

The relation can be made reflexive, by adding (b, b) and (c, c) to R.

Hence, the reflexive closure of R is

Re=RUA,= {(a, a), (b, b), (¢, ¢), (a b), (b.c), (c, a)}

1.17.2 Symmetric Closure

Let R be a relation defined on a set A.

The relation Rs is called the symmetric closure of R if Rsis thesmallest

relation containing R, having the symmetric property.

The relation Rs= RU R is thesmallest symmetric relation containing

Rand it is the symmetric closure of R.
Inotherwords, the symmetric closure of R is obtained by adding all

ordered pairs of the form (b, a), whenever (a, b), belongs to the relation, that

are not already present in R.

Example 1.15:
Find the Symmetric Closure of the relation
R={(11),(1,2),(272),(273),3,1), 3 2}
Defined on the set A = {1,2,3}.
Solution:
The relation is not symmetric.
The relation will be a symmetric if we add (2,1) and (1,3) to R.
Hence the symmetric closure of R is

1(1,1), (2,1). (2,2), (2,3), (3.1), (1.3), (3.2)}

13



Example 1.16:
Find the symmetric closure of the relation
R={(4,5),(55),(56),(6,7). (7, 4). (7. 7}
defined on the set A = {4,5,6,7}.
Solution:
The smallest relation containing R, having the symmetric property, is
RU R1={(4,5),(5,4),(5,5),(5,6),(6,5),(6,7),(7,6),(7,4),(4,7),(7,7)}

1.7. MATRIX REPRESENTATION OF RELATION

LetA={aq, a,, ..,a,, andB= by, b,,..b, betwo finite sets,
containing m and n elements, respectively.

Let R be a relation from A to B.

Then, relation matrix of R, denoted by Mg is an mxn matrix, i.e.,

Mr-mij . x,
where
0, if a; ,bj &R
L ifay,b; €R
Mg can be described both in the tabular and in the matrix form.
Example 1.17:
Let A= {1,2,3} and R={(1,2), (1,3), (2,3)}.Determine Mg.

Solution:
1 |12 |3
1 /0 |1 |1
2 |0 (0 |1
3 |0 |0 |0




MR=

o O o
O O -
O R Kk

Example 1.18 :

LetA={1,2,3},B={a b),andR ={(1, a), (2, b), (3, a)}. Determine Mg in
tabular form and in matrix forms.

Solution:
a b
1 1 0
2 0 1
3 1 0
1 0
MR= 01
10
Example 1.19:

LetA={1,4,5}and R={(1, 4), (1, 5), (4, 1), (4, 4), (5, 5)}. Determine M.
Solution:
GiventhatR = {(1, 4), (1,5), (4,1), (4, 4), (5, 5)}.

Then the relation matrix of R, given by

MR=

o O
OR R
= O R



Example 1.20:

LetA={1, 2, 3,4}, B={p, q, .5}, and
R={( p). (1, q), (1, 1), (2 0q),(27r) (2 1)} Find Mg.

Solution:

The matrix representation of relation R, i.e., Mgris given by

pqg r S
111 1 0
201 1 1
lV'R3oooo
4 00 0 O

Example 1.21 :
11
A={abc}andM , = 0
0

Find the relation R defined on A.
Solution:
M p can be re-written as

ab ¢
al 1 0
MR = 0 0 1
b
c 0 OO

Thus, R={(a,a), (a,b), (b,c)}

1.8 DIGRAPHS



Let R be a relation defined on the set A={a; a,, ..., an}.

The element a; of A are represented by points or circles called nodes or
vertices.

Ifa; ,a; e R, then we connect the vertices a;and aj by means of an arc
and place an arrow in the direction from ajto a;.

If (ai,aj)eR and (aj, ai)eR, then we draw two arcs one between a;toaand
the other between a;to a;.

When all the nodes corresponding to the ordered pairs in R are connected
by arcs with proper arrows, we get a graph of the relation R.

This diagram or graph is called the directed graph, or digraph of the
relation R.

If R is a relation on a set A, a path of lengthn in R from ai to aj is a finite
sequence P, suchas, a; ,a; a, .,a,-1 ,abeginning with a;, and endingwith
ajsuchthata;R a,,a,R'a,,.,a,_1R a;

If n is a positive integer then the relation R ® on the set A can be defined
as that there is a path of length n fromajtoajinRie.,a; ,a; ER™ .

The relationR™ is definedonAora; ,a; € R means, that there is
some path in R from a;to aj.

A path that begins and ends at the same vertex is called a cycle.

A cycle in a digraph can be defined as a path of length n> 1 from a vertex
to itself.

The relation R = is sometimes called the connectivity relation for R.

The R"(x) consists of all vertices that can be reached from x by means of a
path in R of length n.

The set R = (x) consists of all vertices that can be reached from x by
some pathinR.

If R is reflexive, then there must exists a loop at each node in the digraph
of R.

If R is symmetric, then (ai, ;)€R implies (;,a) €ER and the nodes a;and a;
will be connected by two arcs (edges), i.e., one from a; to a;and the other from
ajto a;.



Example 1.22:
Draw the directed graph or digraph of the relation
R={(1,2),(13),(22),(2,4).(32),(3,4), (41), (4 3)}
onthesetA={1,2, 3, 4}.
Solution:

The digraph of R is

Example 1.23:
Let A={a, b,d)and R ={(a, b), (a,d), (b, d), (d, @), (d, d)} be a relation on A.
Draw the digraph of R.

Solution:

The digraph of R is shown in Figure
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Example 1.24:

LetA={12, 3 4}and R={(1,1), (1, 2), (2,1), (2,2), (2,3), (2,4), (3,4), (41),
(4,4)}.Construct the digraph of R.

Solution:

The digraph of Ris

(i

i

// ’
3

'y
N

4

N



Example 1.25:
Find the relation R from the digraph of the following figure.

Solution :
The relation R for the digraph is R = {(a,a),(a,c),(b,c),(c,b),(c,c)(d,c)}

Example 1.26:

LetA={1,2, 3,45}and R ={(1,1), (1,2), (2,3), (3,5), (3,4), (4,5)}.

Determine (i) R (i)

Solution: k=
The digraph of R is



L J
' ey
| | / 'J:J

(i)  Here, (1, )€ R and(l, 1) ER=(1, 1) ER?Again,
1,1¢eR and 1,2€eR =(1,2)eR?
1,2 € R and (2,3)eR =(1,3)eR?
23eR and (3,5)eR =(2,5)eR?
23eR and (3,4)eR =(2,4)eR?
34eR and 45€¢R =(3,5)eR?
Thus,
R*={(1,1), (1, 2),(1,3),(2,5), (2,4, (3,5}
(i)
R=={11),(1,2),(1,3),(1,4),(1,5),(273),(2,4),(2,5), 3 4), (3,5), (4 5}



Example 1.27:

Find a non-empty set and a relation on the set that satisfy each of the
following combinations of properties. Simultaneously, draw a digraph of each
relation.

(i)  Reflexive and symmetric but not transitive.
(i)  Reflexive and transitive but not antisymmetric.

Solution:
()  LetA={a b, c} and

R ={{a, a), (b, b), (c, c), (a, b), (a, c), (b, a), (c, a)}.
R is reflexive, since for each element aeA, (a, a) €R.

R is symmetric, since both (a, b) and (b, a) are in R.
Also (a,c) and (c,a) are in R.

R is not transitive, because (b, a) and (a, c¢) are in R, but
(b,c) € R.



(i) LetA={a, b, c} and
R ={(a, a), (b, b), (c, ¢), (a, b), (a, c), (b, ¢), (b, a), (c, b), (c, a)}.
R is reflexive.
R is transitive, since aRb and bRc implies aRc.

R is not antisymmetric because (a, b) €R and azb, then (b, a) €R

s
f_#:_ﬁ;-_,--:-’f--"__ T } R ————
;:é?%:::. _ B _.-F“’?:J;Jj"' - - :;’ﬁ@j
T T——— i —-I——‘___F_ -
— e
Example 1.28:

Find the relation R for the digraph in the following figure.



@y RO 0
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Solution:

R ={(a,b),(b,c),(a,c)}.

R is transitive and antisymmetric.

Example 1.29:
Let R be a relation defined on A = {1,4,5}. The digraph of R is shown in the

Figure.



Determine M pand R.

Solution:
Here R={(a,b),(b,c), (a,c)}
4 5

=
=
o -

1
1
4
1
0

Ul

1 1

Example 1.30:

Let A={a,b,c,de}and M g

O OrF

— O
o

O O



Find the relation R defined on A

Solution:
R={(a, a), (a, b), (b, c), (b, d), (c, d),(c, ), (d, b), (d, ¢), (e, a)}.
The digraph of R is

Example 1.31:
Let R be a binary relationon A={a, b, c, d, e, f, g, h] represented by the
following two-component digraphs. Find the smallest integers m and n such that

m <nandR™ =R" .



Solution:

From the figures (a) and (b), the relation R is

R =
@, d

a,b ,b,c ,c,a ,d,e e, f ,f,g ,9,8,
The relation matrix for Figure (a) is

a b ¢
a0 1 O
R= b 0 0 1
c 1 00
o 1 0o 0o 1 O O o0 1
R?2 =R x R O 01 0 O 1=1 0 O
1 001 0 O 0 1



0 01 010 10O
R3=R2xR = 0 00 0 1=0 1 0
@ 1. 01 0 O O O 1
1 00 01 0O 0 10
R*=R3xR 0 1 00 O 1=0 0 1 =R
0O 01 1 00 1 OO
For 3nodes, R!=
R* For 5 nodes,
R1=R®
Since the common multiple of 4 and 6 is 12, we conclude that
R1=R™®

Thus, m=21andn=12.
Transitive closure:

Let R be a relation defined on a set A which is not transitive.

The transitive closure of the relation R is the smallest relation
containing R, having the transitive property.
The transitive closure of Ris just the

connectivity relation R = and it is also represented as transitive (R).

Results:
(i)  LetR bearelationonaset A. Then R = is the transitive closure of R.

(ii) LetR be arelation defined on a finite set Awith A = n. Then,

R*=R UR?2U..UR™

Example 1.32:

Find the transitive closure of the relation R = {(1,2),(2,3),(3,4),(2,1)} on
the set A={1,2,3,4}.
Solution:
(i)  Graphical representation:

The digraph of R is shown in Figure 1.23.
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Since R = s the transitive closure, we can proceed graphically by
computing all the paths.
Paths exists from the vertex 1 to the vertices 1,2,3 and 4.

Thus the ordered pairs (1,1), (1,2),(1,3),(1,4) exists in R *°

Also, there exists paths from the vertex 2 to the vertices 1,2,3 and 4.
Thus the ordered pairs (2,1),(2,2),(2,3),(2,4) exists in R = .
The only other path formed is from vertex 3 to vertex 4.

Thus, Thus the ordered pair (3,4) exists in R =

Hence, the transitive closure of R is
R*=11,12,13,1,4,2,1,2,2,2,3,2,4 ,3,4



(i)  Matrix Representation :

The relation matrix of R is

0100
_1010
0001
0000
Now, we compute the powers of M g
0100 0100 1010
2 _ o _ 101 1010_0101
OMR = Mr" MY 1 0001 0000
X 0000 0000 0000
1010 0101 0101
3_ 2077 - 010 1010-1010
1MR = Mg B0 0 0000 00 00
X 0000 0000 0000
0101 0100 1010
4 3077 - 1010,1010_-0101 _ 2
Mg "= Mg RGoo Bo001 0000 MR

0000O 000O 0000

Continuing in this way, it is observedthat M , ™ equal M p 2, ifnisevenand

equal M g 3ifnisoddand greater than 1. Thus
1111

oo _ 2 3 _
Mp== My UMy *UMgq3s
0000

1

R* =11,12,13,14,2,1,2,2,2,3,2,4 ,3,4

Example 1.33:
Let A=(1,2,3,4} and R={(1,2),(2,3) (2,4)} be a relation defined on A.

Compute transitive closure of R.



Solution:
R={(1,2),(2,3) (2,4)}

R2 =R°R =1,2,2,3,2,4°1,2,2,3,2,4= 1,3,1,4R3
= R2°R = 1,3,1,4°1,2,2,3,2,4= @

R* =@
Transitive closureof R=R= =R UR2 U R3® UR*

={12),(23)(24)}vu 1,3,1,4 U QU @

={(1.2), (2.3) (2,4),(1.3) (1.4)}

Example 1.34:
Let the relation R be defined on the set A=(1,2,3} as R={(1,2), (2,3), (3,3)}.

Compute transitive(R).

Solution:
R ={(1,2), (2,3), (3,3)}.
R2= R°R= 1,2,2,3,3,3°1,2,2,3 ,(3,3)}
= 1,3,2,3, 3,3 and
R3= R*R= 1,2,2,3,3,3°1,2,2,3,3,3
= 1,3, 2,3,(3,3)

transitive R = R~ =R UR?2 UR3={(1,2),(2,3), (3,3), (1,3)}



UNIT |1

FUNCTIONS

1. INTRODUCTION TO FUNCTION

The concept of a function is extremely important in discrete mathematics.

Functions are used in defining sequences and strings concretely.

Functions also express the time duration taken by a computer to solve

problems of a given size.
Definition:

Let A and B be any two sets.

A function f from A to B is defined if for every element ac A there exists a

unique element b e B, such that f(a)=bor(a,b)ef.
A function from A to B is denoted by f : A>B.
Ais called the domain of f and B is called the codomain of f.
If f(a) = b. then b is the image of a and a is the pre-image of b.
The range of f is the set of all images of elements of A.

Functions are also called mappings or transformations.

A function f from A to B has following properties

. Domain of f=A
. If (a,b) € fand (a,c) € f, then b=c.



Example 2.1:
LetA=1,2,3,B=a, b, c andf=1,a ,2,b ,3,c isa functionfrom
Ato B. Find the domain and range of the function f.
Solution:
Here, f(1)=a, f(2)=b, and f(3)=c
The domain of fis A and
The range of f is B.

Example 2.2:
LetA=1,2,3,B=a, b, ¢c andf=1,a ,2,b ,3,a .IsfafunctionfromAto
B? If yes, find the domain and range of f.
Solution:
Here, f(1) = a, f(2) = b, and f(3) = a.
~fisafunction fromAto B
The domain of f is Aand
Therangeoffisa, b

Example 2.3:
Let f: Z >N defined by f(x)=x?+2. Find the domain, Codomain and the range of f.
Solution:

The domain of the function is Z.

The co-domain of f is N.
Now, f(0) =2, f(1)=3,f(2) =6, and f(3) =11, ....and

f(-1) =3, f(-2) = 6, and f(-3) = 11, ....
The range of fis 2,3,6,11,18 .....

Example 2.4:
LetA=1,2,3,4,B=a, b, c andf=1,a ,2,a ,3,b .Checkwhetherfisa
function or not?
Solution:
The domain of f = 1,2,3 which is not equal to A.
-~ fis not a function.



Example 2.5:
let R= 1,a ,2,b ,3,c ,1,b be a from A=1234 to
relation B= a, b, ¢ .Check whether fis a
function or not?
Solution:
Here (1,a) and (1,b) are in R but azb.
=~ fis not a function.
Example 2.6:
Assume f as the function that assign the last two bits of a bit string of length 2 or
greater to that string. i.e., f(11010)=10.
Solution:
The domain of f is the set of all bit strings of length 2 or greater.
The co-domain and range are the setis 00,01,10,11 .

2.2. Addition and Multiplication of function

Two real valued functions with the same domain can be added and
multiplied.

Let f1 and f2 be two functions from AtoR.

Then f,+f,and f,f, are also functions from AtoR and are defined by

fi+ fax =f1x +f,x
fifax =fi1x fox

Example 2.7:
Gliven that f; and f, are functions from RtoR in which f;(x)=x and

f,(X)=  -x. Determine the function f wf apd ff ., ,

Solution:
1
fitfox=fi1x +f,x =Hx

X
And flex-lfxz.fx=xl—x=1
v



2.3. Classification of functions

1. One to one function (Injective function)

A function f:A->B is said to be one to one or injective, if distinct elements
of domain set A have distinct images in co-domain set B.

f:A-> B is injective or one to one if

a1 #2a, =>f a, #f a, foralla;,a, € A

In other words f: A =B is injective if

f ar=f a, = a, =a,Va,a, €A

Example 2.8:

Check whether the function f froma, b, ¢, d to1,2,3,4,5 with f(a) = 4,
f(b) =5, f(c) =1 and f(d)=3 is one to one or not?.
Solution:

The function f in one to one since f assigns different values at the four
elements.
Example 2.9:

Examine the function f x = x2from the set of integers to the set of
integers for one to one
Soln:

The function f x = x2 isnotone to one sincef(1)=f(-1), but 1= -1.

Example 2.10:
Test the function f x = x + 1 for one to one.
Solution:
f x =f(y)

>x +1=y +1

=X =y
(i.e) T(X)=f(y) = x=y
-~ T is a one to one function.

2. Onto (Surjective) function:
A function f from A to B is said to be an onto or surjectivefunction if for

every element beB, there is an element aeA suchthatf a = b.



Example 2.11 :

Let f be a function froma, b, ¢, d to 1,2,3 defined by f(a)=3, f(b)=2,
f(c)=1 and f(d)=3. Check whether the function f is onto function or not.
Solution:

Here, all the three elements of the co-domain have pre-images in the
domain.

So the function f is onto.

Example 2.12 :
Is the function f(x) = x+1 from the set of integers to the set of integers onto?

Solution:
Letf:Z>Z

fx)=y

>x +1=y

>x =y -1
(ie) forany y e Z there exists an elements y-1e Z such that f(y-1)=y.
~fis onto.

3. One to one and onto : [Bijective function]
A function f : A - B is said to be a bijective function if f is both one to one
and onto .

Example 2.13:

Let f be a function forma, b, c, d to01,2,3,4 with f(a) = 4, f(b)=2, f(c)=1
and f(d)=3. Check whether the function is bijective or not.
Solution :

The domainoff=a, b, ¢, d

. The Codomainoff=1,2,3,4

Function f is one to one because every elements of the domain have images.
Function f is onto since all the four elements of the co-domain have pre-

Images in the domain.
Function f is one to one and onto.
Hence f is a bijective function.



4, Identity function

A function f:A > Adefined by f(a)=a vV a€A is called an identity function for
Aand it is denoted by Ia.

Also, 1a={(a,a) :a€A}.

The identity function I assigns each element to itself.

The function lais one —to — one and onto.

Hence, lais a bijective function.

5. Constant function

A function f : A - B is said to be a constant function if every element of A
Is assigned to the same element of B.

In other words, if the range of function f containsonly one element, then f is
called a constant function.

Example 2.14 :
Afunction f x =5,V x€R isa constant function
since R¢= Range of f ={5}.

2.4. Composition of Function
Definition:

Let f: A—=>B and g:B—>C be two functions.

The composition of functions f and g denoted by gof : A>C and itis defined
as

(gof)(a) =g(f(a))

Note: The composition of function is not commutative .
i.e.,fog # gof

Example 2.15:

Let f be a function from the set {a,b,c} to the set {1,2,3} such that f(a)=3,
f(b)=2, and f(c)=1.

Let g be a function from the set {a,b,c} to itself such that g(a)=b, g(b)=c,
g(c)=a.

Determine the composition of f and g and also the composition of g of.



Solution:
The composition f and g is defined by
(fog)(a) = f(g(a)) =f(b)=2
(fog)(b)=f(g(b)) =f(c) =1
(fog)(c)=f(g(c))=f(a)=3
The composition of g and f is gofand it is not defined.

Example 2.16 :
Letf : Z > Zbe a function defined by f(x)=2x+3.
Let g : Z ->Z be another function defined by g(x)=3x+2.
Determine the compositionsfogand g o f.

Solution:
The composition of fand g is fog : Z - Z and it is defined as
(fog)(x)=f(g(x))=f(3x+2)=2(3x+2)+ 3 =6x+7
Also the compositionof gand fisgo f: Z >Z and it is defined as
(gof)(x) = g(f(x)) = g(2x+ 3) =3(2x+3)+ 2=6x+ 11

Example 2.17 :
Let f:R—>Rbe defined by f(x) = x+1 and
g: R>Rbedefinedasgx = 2x? +
3. Findfogand g of. Is fog=gof?

Solution :
fog:Z>Z
fogx= fgx= f2x*>+ 3= 2x2+ 3 +1
=2x2 +4
gof:Z->Z

(gof)(x) = g(f(x)) = g(x+ 1) = 2(x + 1) + 3
=2(x2+2x+1)+3
=2X?+4x+5
Here, fogand g of are definedbutgo f # fog.

Example 2.18 :
Letf: A= B, g:B>C and h: C>D be three functions. Then
show that ho(gof)=(hog)of.



Solution :
Giventhat f.A->B,g:B->C,andh:C ->D
Then gof: A>Candhog: B> D
Hence, ho(gof): A->D and (hog) of: A>D.
Let xeA,yeB and ZeCsuch thatfx = yandgy =z
Then, ho gofx = h gof (x) = h(g fx= h gy = h(2).
hog ofx = hog f(x) = hogy= hgy= h(2).
Thus
(hog)of=ho(gof),vx €A
Theorem 2.1
Let f:A-> B and g: B->C be two functions.
I. If f and g are injective then gof is injective.
I1.If f and g are surjective then gof is Surjective
Proof:
Given that f:A-> B and g:B—>C are two functions.
~gof:A>C
I. Given that f and g are injective
Let xeA and yeA
Letx#y
=fx z f(y) =~ fis injective
=>gfxz g(fy) . g isinjective
= gofx # (gof)y
~ g o fisinjective,
Il.Letze C
To prove that gof is surjective find an element xe A such thatgof(x) = z.
Since f is surjective, for any yeB there exists an element x e A such
that f(x)=y.
Since g is surjective, for anyzeA there exists an element yeB such that
g(y)=z.
Now, gof x = g fx
= 8Y
=z
~gof is surjective.



Corollary: 2.1

The converse part of the theorem is not true.

I.e., If gof is injective, it is not necessary that f and g are individually
injective.

Theorem 2.2
The composition of any function with the identify function is the function
itself.
Proof:
Let f: A-> B be any function.
Letx € A andy € B such that f(x)=y.
If Ia: A>Ais the identify function, then
Iyx =x Vx €A
folA: A -B
folA x =f(Igx )
= f(x)
~ folA=A
If Ig: B->Bis the identity function, than
gty =yVVYyEBI
of: A>B
lgof x = Ig f(x)
= f(x)
lgof=F
Thus f ola= Igof =T1.

2.5 Inverse function
Let f:A-> B be a bijective function defined by f(a)=b, where a€A and beB.
The inverse function of f is denoted by f*and f 1: B> A is defined by
f~' b = a whereaeA and beB.
If we can define the inverse function of f, then f is said to be invertible.

If the function f is not a bijective function then we cannot define the inverse

function of f.



Theorem 2.3

Let f:A—>B be a bijective function and f is its inverse. For each xeB

fof-tx =x

andforeachx € A f~'o f x =x
(ie,)fof 1= lgandf~1o f
=l Proof:

Given that f:A-> B is a bijective function.

~f~LB>

A fof?:

B->B
Letx € Band f!(x)=zforanyze€ A

f(z) = x
fof™*x =f flx

=1(2)
=X

~fof t=1p
Letx €A andf x = z foranyz € B

~flz = x

f~lof :ADA

flof(x)= f~1(f x)

.’.f‘lof = IA

Example: 2.19
LetA={ab,c}, B={1,2,3}and f ={(a,1), (b,3), (c,2)}. Determine the inverse.
Solution :

f:A->B is both one-to-one and onto.

I,e., Tis bijective.

f~1: B>A

f~'=1,a ,2,c ,3,b

Example: 2.20
Show that the function f(x)=x3and g x = x1/3 forall XER are inverses
of each other.



Solution:
f x =x3
g x =x1/3
fog x =f g x
1
= f(x3)

3
= ,1/3

~gof =1
~g =f1

Thus the functions f and g are inverses of each other.

Example 2.21:

Let f: R—R be defined by f(x) = 3x- 4. Find a formula for f*
Solution:

f: R—>R
Given that f(x) = 3x-4
Consider f(x) = f(y)
= 3x-4 =3y-4
= 3x =3y
=>XZY
e, f(x) =f(y) = x=y
=~ fis one- to- one,
Let y be the image of x under the function f.
fx)=y
=3X-4=y

=>X=y+ 4
3



For any y€R there exists an element y + 4/3€R such that
y+4

f—=y
~f is onto.
f is one-to-one and onto.
~f is bijective.

We havef"”T:y

A y) =y +3

f(x) = x +;which is the formula for f*.

Example2.22 :

Let X ={a, b, c}. Define f:X — Xsuch that f = {(a,b), (b,a), (c,c) }.

Determine
DY i) 2 i) Piv)

Solution:
i)  f={(ab).(ba)(cc)}
f(a) =b flb)=a
f(b) =a fla)=b
f(c)=c flc)=c
f+={(b,a),(ab),(c,c)}
i) 2= fof

f (a) = (fof)(a) = f(f(a)) = f(b) =a
2 (b) = (fof)(b) = f(f(b)) = f(a) =b
2 (c) = (fof)(c) = f(f(c)) = f(c) =c
~f={(a,a),(b,b),(c.c)}

iii) = fof?
f= (fof?)(a) = f(X(a)) = f(a) = b
= (fof?)(b) = f(F(b)) = f(b) = a
= (fof?)(c) = f(f4(c)) = f(c) = ¢
~ f={(ah).(ba)(c,c)}

iv) ft=fof
f4(a)=(fof*)(a)=f(*(a))=f(b)=a
f(b)= (fof°)(b) = f(f*(b)) = f(b) = a
fi(c)= (fof®)(c) = f(f*(c)) = f(c) = ¢
*={(a,a),(b,b),(c,c)}



Example 2.23:
Let f be the function from the set of integers to the set of integers such that
f(x)=x+1. Is fis invertible and if so, find its inverse.

Solution:
f:Z—Z7
f(X)=x+1
Consider that f(x)=f(y)
= x+1=y+1
=X =y

Le., fT(x)=f(y)= x=y
~f is one-to-one.
Let y be the image of xunder the function f.
f(x)=y
X+1=y
x=y-1
For any yeZ there exits an element y-1 € Z such that f(y-1)=y
=~ fisonto.
f is both one-to-one and onto.
~fis bijective.
~fisinvertible.
We have f (y-1)=y
=Fiy)=y-1
f1(x)=x-1
Inverse of fis ftand f!: Z—Z defined by f(x)=x-1.

Theorem 2.4:
If f: X—Y and g: Y—Z are bijections then (gof)*=f'og™
Proof:
Since f and g are bijections, gof is a bijection.
gof: X—Z
(gof)*: Z—X is also a bijection.
f: X— Y is a bijection.
~f1: Y— Xis a bijection.
g: Y— Zis a bijection.



~g*t: Z—Y is a bijection.
~flog*: Z— Xis a bijection.
Now letz € Z
Since g is onto, there exists an elementy € Y such
g(y)=z. g*(2)=y
Since fis onto, forany y € Y, there existsan elementx € X such that
f(x)=y
= y)=x
(Frog ) (@)=F(g™(2))=T(y)=x
Le(flogH(@)=X................ (1)
Now (gof)(x)
=9(f(x))
=9(y)

From (1) & (2) we get
(gof)*=f'og™



UNIT I
MATHEMATICAL LOGIC

3.1 Introduction:

Mathematical logic emerged in the mid-19th century as a subfield of
mathematics independent of the traditional study of logic. Mathematical logic is a
subfield of mathematics exploring the applications of
formal logic to mathematics. Logic is the basis of all mathematical and automated
reasoning. The logical reasoning, also known as critical thinking or analytic
reasoning, involves one's ability to isolate and identify the various components of
any given argument.

3.2. STATEMENT (Propositions)

A Statement (or a proposition) is a declarative sentence (i.e, a sentence that
declares afact) which is either True or False but not both and which is also
sufficiently objective, meaningful and precise.

The truth or falsity of a statement is called its truth value.

The truth values “True and False” of a statement are denoted by True and
False respectively.

The value of a statement if true is denoted by 1 and false if expressed by 0.
For example:

Consider the following sentences.
(i)  Tamil Nadu is in India.

(i) 7+2=9.

(iii) 5<10

(iv) Bangalore is in West Bengal
(v) X+2=7

(vi) Where are you going?
(vii) Roses are red.
(viii) Go to bed.



The sentences (i),(ii),(iii),(iv) and (vii) are statements.

Among these (iv) is false and others are true.

(v)is not a proposition (or a statement),since it is neither true nor false.
(vi) is a question, it is not a statement.

(viii) is not a statement but it is a command only.

Laws of Formal Logic
The two famous laws of formal logic are

1. Law of contradiction :For every proposition pit is not the same notion that p
Is both true and false.

2. Law of intermediate exclusion
If p is a statement (proposition), then either p is true or false is no possibility
of intermediate exclusion.
3.  Basic Set of Logical operators/operations:

The three basic logical operators/operations are conjuction (A),disjunction
(V), and negation (~ ) which corresponds to the English words like ,andaf;and
ot respectively.

1. Conjuction:(AND/ A)

If p and g are any two positions, then the conjunction of p and q is
denoted by pAq .

The truth value of pAq is true if p is true and q is true.Otherwise pAq
Is also false.

The Truth Table for pAqis given in Table 3.1
P Q PAq

n| m| = o

Nl 4| M| 4
M| T T -




Example 3.1:

Find the conjunction of the proposition p and g when p is the proposition
,,Today Is Saturday“and ¢ is the proposition “1t is raining heavily today™.

Solution:
p: ,,Today is Saturday™.
g: ‘1t is raining heavily today*
pAq :,,Today is Saturday and it is raining heavily today”.

2. Disjunction(OR,pvQ)

If p and g are any two positions, then the disjunction of p and g
is denoted by pVqg and it is read as ,p or ¢°

The truth value of pVq is true if any one of the propositions p or q is
true. If p and q are false, then pVq is false.

The Truth Table for p\Vq is given in Table 3.2

p g pVg
T T T
T F T
F T T
F F F

Example3.2 :

Find the disjunction of the propositions p and q where p is the proposition “Today
Is Saturday” and q is the proposition It is raining heavily today™.

Solution:

p: ,,Today is Saturday” .



g: ‘1t is raining heavily today*
pVQ: ,,Today is Saturday or it is raining heavily today™.

Example 3.3 :

Let p be ,,Suja Speaks Tamil*“and let q be ,,Suja Speaks English™. Give a simple
verbal sentence which describes each of the following.

(i) pVg (i) pA
Solution:

p : ,.Suja Speaks Tamil

q :Suja Speaks English**
()  pVQ:Suja Speaks Tamil or English.
(i)  pAq:Suja Speaks Tamil and English.

Example3.4 :

Assign a truth value to each of the following statements.

(i) 5+5=10V 1>2
(i) 6x4=21 v2+7=10.

Solution:

(1) True, since one of its components is true. ,i.e.,5+5=10 is true.
(ii)  False, since both the components are false.

3. Negation(NOT,~p)
The negation of proposition p is denoted by ~p and it is read as ,,not p*

The negation of a proposition can be formed by stating ,.It is not the case that* or
,Itis false that ,,.

The truth value of ~p is represented in the following table.



“p
T
F T
Example3.5 :

Find the negation of the following statements

(i) Kolkataisin India.
(ii)  4+4=9.

Solution :
(i)  Itisnotthe case that Kolkata is in India.

Or Kolkata is not in India
Or It is not the case that Kolkata is in India.
(i) 4+4 + 9.
Example 3.6 :
Find the negation of the following propositions.

(i)  Today is Sunday.
(ii)  Itisarainy day.
(iii) I it snows, Mani does not drive the car.

Solution:

(i)  Today is not Sunday.
(i)  Itisnota rainy day.
(iii) It snows and Mani drives the car.



Example 3.7 :

Let p: Jemila is tall and g:Jemila is beautiful..Write the following statements in
symbolic form.

(i) Jemilais tall and beautiful.

(i) Jemilais tall but not beautiful

(iii) Itis false that Jemila is short or beautiful
(iv) Jemilais tall or Jemila is short and beautiful

Solution:
(i) pV9q
(i) pA.
(iii) ¢
(iv) (©0)

P\0/9)
3.4. Proposition and truth tables:

Let P(p,q) be a proposition constructed from logical variables p,q..... which
take on the value TRUE(T) or (FALSE)(F), and which operate on the logical
connectives AV,~.  Such an expression is called a proposition.

Example3.8 :

Construct the truth table for (pvg).

Solution :
P 19 |rvq | P
TI|T|T F
T T F
F (T |T F
F |F |F T




Connectives:

The statements which do not contain any of the connectives are called
atomic statements or simple statements or Primitive Statements.

The common logical connectives used are negation(~), and(A), or(V),
if.....then(—or=), if and only if(¢<> o r <) and equivalence(=).

Example 3.8 :
Write the following statements in Symbolic form.

(i)  If Anand is not in a good mood or he is not busy, then he will go to
Kharagpur.

(i)  If Santhosh knows Object-Oriented Programming and Oracle, then he
will get a job.

Solution:

(i)  Letp:Anandis in good mood,
g:Anand is busy and
r:Anand will go to kharagpur

The statement in symbolic formis (~pV~q)->

r
(ii)  Let p: Santhosh knows Object-Oriented Programming
g:Santhosh knows Oracle

r:Santhosh will get a job
The statement in symbolic formis (p~q)> r

Example3.9 :

Let p: Babin is rich, g:Babin is happy. Write simple verbal sentences which
describes each of the following statements.

(pVq (i)p/Aq (ii)g->p (iv)pv~(

(V)ge=p (Vi) ~p=>q (vii)~~p (viii)(~pAq) >p



Solution:
(i)  Babinisrich or Babin is happy.
(i) Babin is rich and Babin is happy.

(iii) If Babin is happy then Babin is rich.
(iv) Babin is rich or Babin is not happy.

(v) Babinis happy if and only if Babin is rich.
(vi) If Babinis not rich then Babin is happy.

(vii) Itis nottrue that Babin is not rich.
(viii) If Babin is not rich and happy then Babin is rich.

Compound Propositions:

Compound or composite propositions (statements) are composed from sub-
propositions by means of logical operators or connectives.

Example3.10 :

(i)  Write a compound proposition with sub-propositions ,,Sojan is
intelligent“ and Sojan studies every night™.

(ii)  Write a compound proposition with sub-propositions™ The sun is shining"™
and ,.the sky is blue™.

Solution :

(i)  Sojanis intelligent or studies every night.
@  “Thesun is shining and the sky is blue"

Example 3.11 :

Construct truth tables for each of the following compound propositions.
i) E\Qvpr) (i)~(pva)v(~pA~0)
Solution :

(i) PrgV(p/)



(PAQV(p/r)

p/\r

P

(i) ) ~(evVaV(~p/~a)

~(pvVgV(~pA~Q)

~(pVq) | (“pA~Q)

pvq

~q




Example 3.12 :
Construct the truth table of pA(g\)

Solution :
P q r qvr pAQVr)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

Conditional Statement:

If p and g are any two statements, then the statement p—q which is read as
,if p then {is called a conditional statement.

If p is true and q is false, then the conditional statement p—q is false.

Otherwise p—q is true.

The statement p is called the antecedent and the statement q is called the
consequent (or conclusion).

p—q is interpreted as pis sufficient for §or ,,q whenever pThe

truth table for p—q is given in table




p g p—q
T T T
T F F
F T T
F F T

Converse, Contrapositive and Inverse.
The converse of p—q is the proposition g—p.
The contrapositive of p—q is the proposition ~q—"~p.

The inverse of p—q is the proposition ~p—~(.

Example3.13 :
Write the conditional statement for the following statements.

(i)  Letp:Anubis agraduate and
g :Anub is a lawyer

(ii)  Let p:The function is differentiable and
g:The function is continuous.

Solution :

() p—q:IfAnub is a graduate, then she is a lawyer.
(i)  p—q: If the function is differentiable, then it is continuous.



Example 3.14 :

Determine the contrapositive, the converse and the inverse of the conditional
statement ,,The Team A wins whenever it is raining"™.

Solution:

Let p:ltis raining and
g : The Team A wins.

The given statement can be modified as
LIf it is raining, then the Team A wins™.
It is the conditional statement p—q.
The contra positive of this conditional statement is
~q—"~p : If the Team A does not win, then it is notraining.
The converse is
q—p :If the Team A wins, then it is raining.
The inverse is

~p—"~q : Ifitis not raining, then the Team A does notwin.

Biconditional Statement:

A statement of the form ,pif and only if §is called a biconditional
statement. It is denoted by p«=q.

If p and q have the same truth value, then p<>q is
true. If p and q have distinct truth values, then p<>q

is false.

The truth table for pé>q is shown in table



P q pP<>4

T T T

T F F

F T F

F F T
Example3.15:

Write any two biconditional statements.

Solution :

()  Aninteger is even if and only if it is divisible by 2.
(i)  Two lines are parallel if and only if they have the same slope.

Example3.16 :
Show that p=q is the same as ~q= ~p.

I.e., The contrapositive ~q—~p of a conditional statement p—q always has
the same truth value as p—q.

Solution:

P|g|™P |70 | ™q="p | P=(
TIT| F|F T T
TIF|F|T F F
FIT| T|F T T
FIF| T | T T T




3.5 Algebra of propositions :

Various laws useful to simplify the propositions are listed in the following table.

1. @pVp=p Idempotent laws | (b)pAp=p
2. (a)(pVq)Vr=pV(qV1) Associative laws | (b)pAQAEpAQAT)
3. (a)pVg=qVp Commutative laws | (b)pAgEq/Ap
4. (a)pV(ghr) =(pVPANpVI) Distributive laws | (b)pA(qVr) H(pAQV(p/Y)
5. (@pVT=T Identity laws (b)pAT=p
6. (a)pvF=p Identity laws (b)pAF=F
7. (@pVv~p=T Complement laws | (b)pA~p=F
8.(a) ~T=F (b) ~F=T
9. ~~p=p Involution law
10.(a) ~(pvq) = ~pA~q Demorgan‘s law | (b) ~(pAq) = “pV~q

3.6. Tautologies and Contradictions:

A propositions P(p,q) is called a tautology if the last column of their truth
tables contain only T. i.e., If the propositions are true for any truth values of their
variables, then such propositions are called tautologies.

A proposition P(p,q) is called a contradiction if it contains only F in the last
column of its truth table.

A proposition that is neither a tautology nor a contradiction is called a
contingency.




Example3.17 :

Show that the proposition pv~p is a tautology.

Solution :
P ~p Y
T F T
F T T

Since the truth value of ~ pv~p is true for all values of p, the proposition is a
tautology.

Example3.18 :

Show that the proposition pA~p is a tautology.

Solution :
P ~p pA~p
T F F
F T F

Since the truth value of pA~p is true for all values of p, the proposition is a
tautology.



Example3.19 :
Verify that the propositionpV~(p”~q) isa

tautology. Solution :

p g pq ~(pAq) pV~(pAQ)
F F F T T
F T F T T
T F F T T
T T T F T

Since the truth value of pv~(pAq)is true for all values of p, the proposition is a
tautology.

Example3.20 :
Show that the followingp A ~q V~(p~~q) isa

tautology. Solution :

p (d |[~“g pr~q(p™~q)|(pA~q)V~(ph~q

T |T |F T F T




FIF|T | T F T

Since the truth value of (pA~q)V~(p~~q) istrue for all values of p,
the proposition is a tautology.

Example 3.21 :
Showthat p -q >r © p >~qVr & ~p”"q Vr
Solution :
p > q—>r
S p >vqVr [Sincep >q =~pVq]
& ~pVY ~qVr [Since p >q =~pVq]

& ~“pV~q Vr[Sinceby Associative law pV(qVr)
=(pVq)Vr]

& ~prq VrByDe-Morgan slaw ™~ pirq =
“pY"7q
& pNq ->r Sincep »>q ="~pVq

Hence

p »2q »r & p >~qVr & “phq Vr

Example 3.22:

Showthatp -q " r 2q © pVr ->q.
Solution:

P >q = ~pVq

r>q & ~“rVq



Consider (p —>q)"(r >q)
e ~“pVqgr(~rVq)

S (YpA~r)Vqg [Since pNqg Vr =
pYr N qVr |

&~ pVr Vq[Since~(pVq)=~p~r~q]
< pVr —q[Sincep >q =~pVgq

Hencep ->q A r ->q © pVr -q.

3.7. Logical Equivalence:

Two propositions P(p,g.......... ) and Q(P,q.......euvtnnnnn ) are said to be
logically equivalent or simply equivalent or equal denoted by P(p,q.....)
=Q(p,q.....) if they have the identical truth tables.

The propositions P(p,q) and Q(p,g.....) are logically equivalent if P<&>Q is a
tautology.

The equivalence of P and Q is also denoted by P Q.

State and prove De-Morgan’s law:

If p and g are any two propositions, then

L ~»pYq =~p "(~q)
. ~p*q = "~p V(~q)

Proof :

lL.~pYq =~p ~(~q)



P q ~p ~q Pvq ~(pvVa) pA(~Q)
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Since the two columns headed by~ p Vg and~p ~(~q) ofthe truthtable are

identical,
~p¥q =~p "(~q).
I ~phqg ="7p
V(i~a)
\ N
P q ~p ~q | PA | “prq |~p V(~q)
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Since the two columns headedby ~ pAq and~p Vv ~q ofthe truthtable

are identical,

~phq

~p V(~q)




Example3.23 :

Show that pA(qVr)is equivalent to @\qMp'y)

Solution :
P q r qvr pAQvY) pq pAr (P\qQV(p/r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Since the two columns headed by pA(qvr)and (pAq)v(pAr) of the truth table a

identical,

PA@D= (PAV(P/Y)

Example 3.24 :

Showthatp & g andp = g ~(q = p) are

mzalant

ol
UqUIV ATCTTL.

p | Q

p<=q

pP=4q

q= 7D

p =q "(q = p)




Since the columns headedbyp < q and p = q ~(q = p) of the truth
table are identical,

pN qVr = phq V(phr)
Example 3.25:

Among the two restaurants next to each other,one has a sign that says“Good food is
not cheap™and the other has a sign that ,,cheap food is not good".

Investigate the signs regarding their equivalence.

Solution:
Let p:Foodisgoodand
g:Food is cheap.

The firstsign says p - ~ q and the second onesaysq - ~p.

p q ~p ~q P 2>7q q>"p
F F T T T T
F T T F T T




From the truth table we conclude that, both the signs are equivalent.

8. Normal Forms:
Some of the basic normal forms are:

l. Disjunctive normal form(dnf)
Il.  Conjunctive normal form(cnf)

l. Disjunctive normal form(dnf)

In a logical expression, a product of the variables and their negations is
called an elementary product or minterm.

Example :PA~R,QAPA~R etc.

An elementary product is identically false if and only if it contains atleast
one pair of factors in which one is the negation of the other.

A logical expression is called a disjunctive normal form,abbreviated as
dnf.if it is a sum of elementary products.

Il.  Conjunctive Normal form (cnf)

In a logical expression the sum of the variables and their negation is called
an elementary sum.

Example :Pv~Q,~PV~QV~R

An elementary sum is identically true if and only if it contains atleast one
pair of factors in which one is the negation of the other.

A logical expression is called a conjunctive normal form, abbreviated as
cnf, if it is a product of elementary sums.




Example 3.29
Find the dnf for the propositional form f(P,Q.R) defined as

F F F T
F F T F
F T F T
F T T F
T F F T
T F T F
T T F F
R A A

Solution: The dnf is expressed as
(~PA~QAR)V(~PAQAR)V(PA~QAR)V(PAQAR), is the required dnf.



Example 3.30
Find the dnf of ~(PVQ) < (P"Q)

=~(PVQ)= (PAQ)=(~(PVQ)*(PrQ))V((PVQ) A~ (P"Q))
[since R & S = (RAS)V(~RAS)]
= (*PA~QAPAQ) V ((PVQ) A(~PV~Q)
=(~PA~QAPAQ) V (PVQ A ~P) V(PvQv™Q)
= (~PA~QAPAQ) V (P A ~P) V(Q AP) v (PA~Q) v (Q A ~Q)

Example 3.32 Find the cnf of the following
(i) p™p=>q)=p *~pva) [is in cnf]

(i) (qv(p*r)*~((pvr)™q)
= (qv(p”r))M(~(pvr)*~q)
= qv(p”r) v(~ p A ~r)Avg
=(qv p) Mg v )M~ pv~ag)r(~rv~a)



UNIT IV
MATRIXALGEBRA

4.1. INTRODUCTION

Matrix algebra plays an important and powerful role in quantitative analysis
of management decisions in several disciplines such as production, marketing,
finance, economics, computer science, discrete mathematics, network analysis,
Markov models, input-output models and some statistical models. All these models
are built by establishing a system of linear equations.

Matrices are useful because they enable us to consider an array of numbers
as single object, denote it by a single symbol, and perform operations with these
symbols in a precise form.

Definition of a Matrix

A rectangular array of entries arranged in m rows and n columns is called a
matrix of order m by n, written as mxn matrix.

A matrix is usually denoted by a boldface capital letter enclosed within
brackets for example A or [a;] respectively.

ajj represents the element in the i row and the j™ column of a matrix A.
A:[aij]mxn,lfi Sm y IS_]SH.
A'is a matrix of order mxn.

In general an mxn matrix A may be written as

all al2 .aln
A =a2Zl a2 ao

am am L.amn
The i"row cohsists o& the entries



Example: A = 123 Is @ matrix of order 2 x 3.
1 5 7

NOTE : A matrix of order mxn contains mn elements.

4.2. Types of Matrices
Let A=[aimxn  coeeeennnnn. (1)
1. Rectangular and Square Matrices
If m# n ,then the matrix A is a rectangular matrix of order mxn.
If m=n, then the matrix A is a Square matrix of order n.

If A=[aij]n<niS @ Square matrix, then the principal/leading diagonal elements
are aii.

The diagonal elements of Aare a;1,a22,833,............ ,ann.

The sum of principal diagonal elements of a square matrix is known as trace
of the matrix.

Traceof A = ,"1 A;; = Q11+ Ay .+ Apyp
1=
Example:1
2 2 3 _
3 5 7|s a rectangular matrix of order 2x3.
Example:2
) 3 1 5
A=[5],B = | 2,andC= 1 5 1
7 5 2

A is a square matrix of order 1.
B is a square matrix of order 2and

C is a square matrix of order 3.
Trace of B=2+4=6
Trace of C=3+5+2=10



2. Row matrix or a Row Vector

A matrix having only one row and any finite number of columns is called a
row matrix or a row vector.

If m=1 then the matrix A is a 1xn matrix.
Example:
(15 34)is arow matrix of order 1x4 and

(5) is a row matrix of order 1x1.

3. Column Matrix or a Column Vector

A matrix having only one column and any finite number of rows is called a
column matrix or a column vector.

If n=1 in equation (1) then the matrix A is an mx1 matrix.

Example :

1
2 Is a coloumn matrix of order 3x1.
3

4. Zero or Null matrix

A matrix whose elements are all zero is called a Zero matrix or Null matrix.
A zero matrix of order mxn is denoted by Opn.

Example:

(0 0) is a zero matrix of order 1x2 and is written as 01

Is a null matrix of order 2x2 and is represented as 0.,

5. Diagonal Matrix

A square matrix of order n having non-zero elements on the main diagonal is
called a diagonal matrix of order n.



Example 1 :

0 1 Is a diagonal matrix of order 2x2 .

Example2 :

2 0 O

0 5 0 isadiagonal matrix of order 3x3.
0O 0 6

6. Scalar Matrix

A Square matrix in which every non-diagonal element is zero and all
diagonal elements are equal is called a scalar matrix.

Example 1 : > 05 a Scalar matrix of order2x2

oNwo WUV

0
7 0
Example2: 0 0 is a Scalar matrix of order 3.
0 7

7. Unit matrix or Identity matrix

If A is a square matrix of order n in which every non-diagonal element is

zero and every diagonal element is 1, then the matrix A is called a unit matrix or
identity matrix of order n and it is denoted by |,.

Example:

I:=[1] is the identity matrix of order 1.

1 0s the identity matrix of order2.
0 1

1 0 O

|2:

;=0 1 0 isthe identity matrix of order 3.
0O 0 1

8. Comparable Matrices

Two matrices A=[ajj]m-nand B=[bjj]m-n are said to be comparable matrices if
they are of the same order.



Example:

) 4 1 -2 6 -3
The matrices and -6
3 o -4 _1q , are comparable because
both are of the order 2x3.

9. Equal matrices

Two matrices A=[ajj]m-nand B=[bjj],~qare said to be equal, written as A=B,
if they are of the same order and their corresponding elements are equal.

Example:
LetA= %11 %12 g=4 g
Az 1 -1
A=B if and onfAf
ann=4, a12=5
an=1, an=-1

10.Upper triangular Matrix

If all elements below the main diagonal are zero, then the matrix A is called
an upper triangular matrix.

1 2 0
Example: 0 2 1 isanuppertriangular matrix of order 3.
0O 0 3

11.Lower triangular matrix

If all elements above the main diagonal are zero, then the matrix A is called
a lower triangular matrix.

1 0 O
Example:l A=4 3 0 isalower triangular matrix of order 3.
5 3 6
1 0O
Example:2 2 2 0 isalower triangular matrix of order 3.
0O 2 3



5.3.  Operations on Matrices

There are several operations that can be performed on matrices. They are
described below.

1. Addition of Matrices

If A=[ajj] m« and B=[bjj]m-n are two matrices of the same order, then their
sum A+B is a matrix of order mxn obtained by adding the corresponding elements
of Aand B.

ThUS, A+B=[aij]mxn'l'[bij]mxn:[aij+bij]m><n
Sum of two matrices A + B exists only when A and B are of the same order.

Example:

) _6 2 -2 _ 4 _3 _¢g
(1) LetA—3 7 _ZandB— IR

A+B=0*4% 2_3 _2_5¢
3-1 2+1 -2+4

_10 -1 -8
2 3 2
1
.. _ 2 2 3 -6
(i) LetA—4 0andB— -

Matrix A is of order 2x2.
Matrix B is of order 2x3.

Hence A+B is not defined.

2. Subtraction of matrices

If A and B are two matrices of the same order, then their difference is given
by A-B=A+(-B),where the matrix (-B) is the negative of the matrix B.

. | A 3 4B 1 3
xample: = =
i 2 2
B -1 -3
(-B)= 5  _c
Then
3 4 -1 _
A- B= A+ -B = + 3
2 2 2 -5



3. Scalar multiple of a matrix
Let A=[a;j] be an mxn matrix and a ¢ be a scalar (any number c).

Then cA = [ca;] obtained by multiplying each entry in A by c is called scalar
multiple of A by c.

2 -1
A= 0 9
9 -4
-2 1
-A= 0 -9
-9 4
5x2 5x-1
Also 54 = 5x0 5 x9
5x9 5x-4
10 -5
=0 45
45 -20
0 O
OA= 0 0
0 O

4. Multiplication of matrices
Let A be an mxn matrix and B be an nxp matrix.

If the number of columns of A is equal to the number of rows of B, then the
multiplication of matrices AB is possible.

To obtain the (i,j)™element of matrix AB ,multiply the i" row elements of
matrix A by the j"™ column elements of matrix B.

The i row of A is [ai1,aiz,.. .. ..ain] @and the j" column entries of Bare



If the product matrix AB is C, then

Cij=ai1b1j+ai2lyjt. . . Fainbnj
n

= Ak bkj,lﬁiﬁm, 1Sj5p
k=1

4.4. Related Matrices

1. Transpose of a Matrix

If A is an mxn matrix, then the matrix obtained by interchanging the rows
and columns of A is called the transpose of A.

Transpose of the matrix A is denoted by AT orA.

Example:
1 2 -1
A=3 0 2
4 5 0
1 3 4
Then AT= 2 0 5
-1 2 0

Note :(AT)'=A

2. Symmetric and Skew-Symmetric matrices

A square matrix A is said to be symmetric if AT= A,
A square matrix A is said to be skew-symmetric if AT=-A(or A=-A")

Thus a square matrix A=[aij]n«n s said to be
Symmetricifa=aiViand j
and Skew-symmetric if a;=-a;; V' i

and j



a b c
Example: ThematrixA = b d e isasymmetric matrix.
c e f
0 a b
The matrix A = 0 ¢ Isaskew-symmetric matrix.
-a
-b -c O

Note :
(i) If A is symmetric matrix of order n, then the number of independent

elements= %n (n +

(i) fAisa Skew-Symmetric matrix of order n, then the number of
independent elements= %n (n -
1).

3. ComplexMatrix

If each or a few elements of a matrix are complex numbers, then the matrix
Is called a complex matrix.

A complex matrix can be expressed in the form X+iY, where X and Y are
real matrices.

- | 2+ 50 1 2 1 5 0 o |
xample: A = 3-9; 1 3 1+l _5 O-X + 1Y isacomplex
matrix.

4. Conjugate Matrix

If A=[aij]m~n, then the matrix obtained by replacing each element of A by its
complex conjugate is called the conjugate matrix of A and is denoted by A.

Example:
_ 1- 4 1-1
HA=ywi c1o0 2
then A=1 *1 4 1+

2-1 -1+ 2
Note :(A)=A.



Example:

IfA =

W R

0
0 show that (AB)"'=B'A".
3

v oN
N
Q
=
QU
oy
N =)

Solution:

>

W

I

w
Ko N
N

X

N
PR O
wo o

AB=
1x1+2%x2+ -1 x0 1x0+2x1+ -1 x1 1x0+2x0+ -1 x3
3x1+0%x2+2x0 3x0+0x1+2x1 3x0+0x0+2x3
4x1+5x2+0x0 4x0+5x1+0x1 4x0+5x0+0x3

14440 O0+2+(-1) 0+0+(-3)
=3+0+0 0O+0+2 0+0+6
4+ 10+0 0+5+0 0+0+0

5 1 -3

AB = 32 6

14 5 O



1+4+0 3+0+0 4+10+0
=0+2-1 0O+0+ 2 0+5+0
0+0-3 0+0+6 0+0+0

5 3 14
=1 2 5 i) )
4 5 0

From (1) and (2) we say that (AB)'=B T AT

4.5. Determinant of a matrix

Determinant of a square matrix Amay be denoted by det Aor |A| or
A.Determinant of a square matrix Aoforder 1.ie.,A=[a]

DetA=|A|=a
Determinant of a 2x2 matrix(i.e., of order 2)

a1 Qa1
A=
a1 Az

|A|=a11a22-a21312

Minor and co-factor
Let A=[aij]mxn be a matrix of order mxn.

The minor ofan element ajjis the determinant formed by deleting the
ith row and the jth column in which the element ajj exists.

The minorofthe element agis denoted by M.

The minor ofthe element of a determinant of nis a determinant
of order(n-1).

The cofadorof an element ajjis denoted by Ajis defined
as Aij=(-1)+iM;.



Example:
a1 412 QA13
Let A= dz1 dj; dj3
as; 0aszp ass
ai;p Q12 Ag3
A= A= djz;1 Aj; 0A3z3
dsz1 Ad3zp; 0A3z3

The minor and co-factor of the elements ai1, a22 and as2 ofthe determinant
|A| are

¢ Ay Ajrs
M11= Minorofaii1 =
as Qass
2

=d22d33-d23d32

A11= Co-factor of a11 =(-1)1+1 M1

+ (a22a33-a23a32)

. iy QAi3
M22= Minorof az) =
asz1 dszs

d11d33-d13d31

A,,= Co-factor of az2

(_1)2+2 M>>

=+(a11a33-a13a31)

_ a1 Aais
Ms, = Minor of a 3; =
ajz,

aj
a§1823-813821
As;= Co-factor of a3 =(-1)3+2 M3,

=-(a11a23-a13a21)

Expansion of the Determinant

The determinant A of a matrix A can be expressed as the sum of the

products of elements of any row(or column) by their corresponding co-
factors.



A=a11A11-a12A12+a13A13

_ az: _a 21 @23 a a;
lasz, @ss 12 asz; @33 13 as,
? 3 asq

asy)

3
A= (-1)" aijMij
j=1

(1) Mij}

]
Q
o~

~—.
—_—

— 3 . .o
-1 aijAij

ainAi1 + apAiz + aizAiz

for either i=1 or i=2 or i=3.
i.e., the determinant(a) is expanded along i row.

Difference between a matrix and a Determinant

17 Ap72Q33 — A3Q37 — A1 Ay1033 — A3a37 + agz(az;as; -

aj,

A matrix is an arrangement of numbers in which the number of rows may

not be equal to the number of columns.

A matrix defines the representation without any fixed numerical value.

However a determinant has a fixed value.

Example 1.
1 2 3
Find the determinantof matrix 4 5 6
7 8 9
Solution :
1 2 3
LetA= 4 5 6
7 8 9



IA|  =1(45-48)-2(36-42)+3(32-35)
=1(-3)-2(-6)+3(-3)
=-3+12-9
=0

~ Ais a singular matrix.

Example 2.
2 -1 1
Find the determinant of the matrix -15 6 -5
5 -2 2
Solution :
2 -1 1
LetA=-15 6 -5
5 -2 2
|A|  =2(12-10)+1(-30+25)+1(30-30)
=2(2)+1(-5)
=4-5
=-1£0
~ Aisanon - singular matrix.
Example:
Prove that A®-4A2-3A+111=0 where A is given by
1 3 2
A= 20 -1
1 2 3

And | is the unit matrix of order 3.



1 3 2
A= 20 -1
1 2 3
1 3 2 1 3 2
A= 20 -1 2 0 -1
1 2 3 1 2 3
1+6+2 3+0+4 2-3+6
=2+0-1 6+0-2 4+0-3
1+4+3 3+0+6 2-2+9
9 7 5
=1 4 1
8 9 9
9 7 5 1 3 2
A=AxA =1 4 1 2 0 -1
8 9 9 1 2 3
9+14+5 27+0+10 18-7+15
=1+8+1 3+0+2 2-4+3
8+18+9 24+0+18 16-9+ 27
28 37 26
=10 5 1
35 42 34
AZ-4AZ-3A+111
28 37 26 9 7 5 1 3 2 1
=10 5 1-41 4 1-32 0 -1+110
35 42 34 8 9 9 2 3 0
28 37 26 36 28 20 3 9 6 11
=10 5 1-4 16 4- 6 0 -3+ 0
35 42 34 32 36 36 3 6 9 0
28-36-3+11 37-28-9+0 26-20-6+0
=10-4-6+0 5-16- 0+ 11 1-4+3+ 0
35-32-3+ 0 42-36-6+0 34-36-9+11



1
o O o
o o o
o o o

=0
Hence A3-4A%-3A+111=0

Example :
2
Show that the matrix A= 1 g satisfies the equation A%-4A+1=0 andhence
find A,
Solution:
:2 3
1 2
AZ—AA—Z 3 2 3
T 2 01 2
_ 4+3 6+6
2+2 3+4
_7 12
4 7
4A=-4 23
T 1 2
'4A: _8 _12
-4 -8
7012 -8 12 10
2_ + = + +
AAAH 4 7 -4 -8 0 1
_7-8+1 12-12+0
~ 4-4+0 7-8+1
_ 0 0
0 0
Hence A%- 4A+1 =0
AZ-4A=-]

AxA-4xA=-|



Post multiplying by A, we get
AXAXAT-AxAx A= A
Axl-41=-At

A-4l=- A

Al = A+4

4.6. Typical Square Matrices

1. Orthogonal Matrix
A square matrix A is said to be orthogonal if AAT=ATA =|

Note :
(i)  ATis an orthogonal matrix.
(i) |JAl=+1.

2. Unitary Matrix
A square matrix A is said to be a unitary matrix if AA'=A"A= .

Note :
If A is a unitary matrix, then ATand A™ are unitary matrices.



3. Involutory Matrix
A square matrix A is calledan involutory matrixif A2=1.

4. ldempotent Matrix
A square matrix A is known as Idempotent if A2=A,

5. Nilpotent Matrix

A square matrix A is known as a nilpotent matrix if A"= 0 for some
least positive integer n.

Integer n is called the index or order of the nilpotent matrix A.

Example:

cosf 0 sin@

Show that 0 1 0 isorthogonal. Determine the value of |A|.
-sinf 0 cosé@

Solution:

cos6 0 siné
Let4 = 0 1 0
-sin@ 0 cos@

cos 0 -sinf

AT = 0 1 0
sin 0 cos

6
cos 0 sinf cosf8 0 -sinf
w i n 6 S O cos®@
AA=  Q©ps28+ 0 LM 01-5iRO cosO +sinb
= 0 sifl2e cos@
S
—Sin9c050Q0+ 1 _ 0
cosO siné 0 sin2@ +cos?0
1 0 O
=0 1 O
0 0 1

AAT=|



~ A'is an orthogonal matrix.

C 0
|Al= sin
-S 0
if§9co%9 fino
~shbcoso

2 ¢ : 2
=CcoS g? ~~Ssin 0

=cos2® + sin?o

=1
Example:
-5 -8 O
Show that the matrix A= 3 5 0 isinvolutory.
1 2 -1
Solution :
-5 -8 O
A= 3 5 0
1 2 -1

-5 -8 0 -5 -8 O

A=AA= 3 5 0 3 5 0

1 2 -1 1 2 -1
25-24+0 40-40+0 0-0-0
=-15+15+0 -24+25+0 0+0-0
-5+6-1 -8+10-2 0+0+1

1
O O -
o= O
= O O

A%=|

~ Ais aninvolutorymatrix.



Example :

2 -2 -4
Show that the matrix A= -1 3 4 isldempotent.
1 -2 -3
Solution:
2 -2 -4
A= -1 3 4
1 -2 -3
2 -2 -4 2 -2 -4
A’=AA=-1 3 4 x -1 3 4
1 -2 -3 1 -2 -3

4+2-4 -4-6+8 -8-8+12
=-2-3+14 2+9-8 4+ 12-12
2+2-3 -2-6+6 -4-8+9

2 -2 -4
=-1 3 4
1 -2 -3
=A
A2 =ZA

~ A'is an Idempotent matrix.

4.7. ADJOINT AND INVERSE OF A MATRIX

To describe adjoint and inverse of a matrix, the following definitions are

necessary.

1. Singular and Non-singular matrix:

A matrix A=[aij]nnis said to be non-singularif | A| =

0. A matrix A=[aij].-nis said to be singular if |A|=0.



Example:

LetA= 2 2
3 3

_2 2
IAI—3 ;5 =0

Hence, A is a singular matrix.

LetA=

_2 1_p oo
AI=%, =6-3=320

Hence, A is a non-singular matrix.

2. Adjoint of a Square Matrix
adj A = transpose of the cofactor matrix
Properties of Adjoint of a matrix
1.A(adj A)=|All=adj(A) A, if |A£0
2 A _adj A adj A

=] =
A A

ALff IAI#0
3.adj(AB) = (adjA) (adj B), iff|[A| #0,|B| # 0
3. Inverse of a Matrix

If for a square matrix A, there exists another square matrix B such that
AB = BA = |, then B is called the inverse of A and it is denoted by A,



1_ adj A
A= A I|A|¢

0.
where adjA=transpose of the co-factor matrix.

Note :

1L.AAT=ATA=I
2. Rectangular matrices cannot have an inverse matrix.

Example:
Find the adjoint of 4 2
-1 3
Solution:
_4 2
LetA= " 1 3
A11 =3
Ap=-(-1)=1
A21 =-2
Azz =4
ofactor matrix= A1z
11 A, A
-2 4
adjA  =transpose of cofactor matrix
11
A
3 ]A 21
=T A »
14
Example

o Ul w

1 2
Find the adjoint of the matrix 2 -4
6 1



Solution:

1 2 3
LetA= 2 -4 5
6 1 O

Cofactors of elements are given by

A = = - = -
11 1 0 0-5 5
2 5
Ay = - = - 0-30=30
12 6 0
-4
Az = = 2--=-24=72
013 = ¢ 4 6
2
3
= - = -0-3=3
Ajq 10
A,y = 3=0-18=-18
1 6 0
A L2 1- 12 11 = 11
-
As;= 2 3 -10-(—12)=10+12= 22
-4 5
A L3 6
= - = - 5— = - —1 = 1
32 2 5
2
A = = -4 - = -8
1°° 2 -4
A11 A12 A13
Cofactor Matrix = A,1 Az; Ajs
A31 A32 A33
-5 30 26
=3 -18 11
22 1 -8
Al Al A13
1 2 Ays
adj A=transpose of cofactor matrix A, Ass
A 2
21 2 A3
3 9
1



A13 A23 A33
-5 3 22
=30 -18 1
26 11 -8

cosa -sina O
Example :Find the adjoint of the matrix cosa 0

sina
) 0 0 1
Solution :
C 0 S « -sinaO
LetA= cosa O
sina 0 1
Cofactor of the eI%ments are
A = 0 =
cé%cx 0 1 cosa
é12= - Sén 2= -sin a
2in cosa _
Az = 0 09
-sin 0
a 1=-{—ﬂna)=
Ay = - Sina
A _Ccos 0_
22 0 1 CoS o
A .= - COs -sina _
23 0 . 0
Asq = -sin 0_p
a cC 0 S
acos
a. QJ=0
Ay, = - Sina
Aj3 = €05 -dina =cos?a +
a S C.

] sin?a =1
in

Q v o



cosa -sina O
Cofactor matrix Aj= cosa O

sina
. 0 0 1
Ade:(Aij)T
cosa sinaO
- cosa
-sina 0
0 0 1
Example:
2 3
If A= 4 8verifythat A(adj A)=(adj A)A=det(A)I
Solution:
2 3
Let A= 4 38
2 3
Al =
Al 4 8
= 16-12
=4
|A|=4
A11: 8
Ap=-4
A21: -3
A22: 2
. 8 -4
f = A
Cofactor matrix _3 5

adjA=transposeof
cofaciéormsatrix

T -4 2

38 -3
4 8 -4 2

16 -12 -6+6
32-32 -12+16

Ax (adjA)=



1 0
= 4
0 1
=4 |
. 8 -3 2 3
A) x A=
(adj A) x 4 2 4 38
16 -12 24 -24
-8+8 -12 +16
4 0
0 4
1 0
=4
0 1
=4 |

~A(adj A)=adj A(A)= (detA) |

Hence it proved

Example :

Find the inverse of the matrix % 1
Solution :
LetA= 2 1

Al=2
A0

Hence A is a non-singular matrix.



~ A1 exists.

Cofactors of the elements of A are

A11=1
A12=0
A21:-l
A22:2
Cofactor matrix Ajj = 1_ 1
adj A= (Aij)T
adja=1 -1
o 2
A1 ' i
_1 1 -1
2 0 2
1 1
ALt,™
0o 1
Example :

Find the inverse of the matrix

Solution:
1 1
LetA= 1 3
-2 -4

A]  =1(-12-12)-1(-4-6)+3(-4+6)



=1(-24)-1(-10)+3(2)
=-24+10+6
=-8
AR
~ Ais a non - singular matrix.
~ Alexists.
Cofactors of elements of |A| are

A= 3 T3 =2-12-12=-24
_4 -4

1 -3 _ g
A== =, T3 =-(-4-6)=10

1 3_ 4ia-
A13—_2 e 4+6=2

-1 3__( —
Ao = a4 -2 (-4+12)=-8

1 3_ 4ia-
Azz—_2 e 4+6=2

__ 1 1__ /. -
A= 25 Za (-4+2)=2

Au=1 3=3.9=-12

3 -3
Ap=- | > =-3-3)=6
1 1_ 5 -
Asz = 1 3° 3-2=1
All A12 A13
Cofactor Matrix  A; = Ay Apn Ay
Az; Az Az
-24 10 2
=-8 2 2
-12 6 2

adj A:(Aij)T



2 2 2

3 1 3/
= -5/4 -1/4 -3/4
~1/4 -1/4 -1/4

Example :
1 -2
Find the inverse of the matrix A=2 -3
1 1
Solution :
1 -2 2
LetA=2 -3 6
1 1 7
A =1-21-6+214-6+2 2+ 3
=1(-27)+2(8)+2(5)
=-27+16+10
=1
|A]| #0

~ Aisa non - singular matrix.
~ A1 exists.

Cofactors of elements of |A| are

_-3 6
A= . 7= (21-8)=-27

(o)}



2 6__ /Y =
. 5 =-(14-6)=-8

2 -3
= = + =
Az 1 1 2+3=5

-2 2
=- =-(-14-2)=16
Ay L ( )
1 2_4 o_
Azz—l 7—7 2=5
An=- | [=-(+2)=-3
-2 2
= = (- + =-
Az 3 6 (-12+6)=-6
1 2 _
Ag==- ) ¢ =-(6-4)=-2
1 2
= = (- + =
A= “5=(-3+4)=1
All
Cofactor Matrix A = Ax
Asq
-27
= 16
-6
adj A = (Ay)"
-27 16 -6
= -8 5 =2
5 -3 1
1
T = —.adj
1 A A
, -27 16 -6
=, -8 5 -2
5 -3 1
27 -16 6
= 8 -5 2

-5 3 1



Example :

1 3 -4
Find the inverse of the matrix 1 5 -1
3 13 -6
Solution :
1 3 -4
LetB=1 5 -1
3 13 -6

|B|=1(-30+13)-3(-6+3)-4(13-15)
=1(-17)-3(-3)-4(-2)

=-17+9+8

| B|=0.

Bis asingular matrix

~ B-1does not exists.

Properties of inverse of a matrix

1. The necessary and sufficient condition for a square matrix A to possers the

inverse is that A is to be non-singular

iled #0

2. The inverse of a matrix, if exists is unique.

3.1f A and B are two non-singular matrices of the same order, then (AB)*=B*A™
I.e, inverse of a product of two matrices is the product of their inverses in the

reverse order.
4. If Alis non — singular, then

@At 1= A



9. Find the inverse of the following

1 -2 2
A=2 -3 6
1 1 7

A =1-21-6+214-6+22+3
=1(-27)+2(8)+2(5)

=-27+16+10

=-1

~Aisa knonsingular
matrix

~A lexists
Cofactors of elements of |A| are
An=(-21-6)=-27
Ar=-(14-6)=-8
A3=(2+3)=5
Agi=-(-14-2)=16
A=(7-2)=5
Agz=-(1+2)=-3
Az1=(-12+6)=-6
Azy=-(6-4)=-2
Azz=(-3+4)=1
Adj A=(Aij)"



-11 -1
2 0 1
1 1
At=73 737
0 1
1 1
Find the inverse of the matrix 1 3
-2 -4
Solution:
1 1 3
LetA= 1 3 -3
-2 -4 -4

|A|=1(-12-12)-1(-4-6)+3(-4+6)
=1(-24)-1(-10)+3(2)
=24-1(-10)+6
=-24+10+6
=-8
|Al#0
~ Aisanonsingular matrix
Alexists

Cofactors of elements of |A| are

-3 -3 __49.19=.
A11—_4 _4—1212 24

__ 1 -3 _ [ —(-10\=
A== 1 7 =(-4+6)=-(-10)=10

1 3
= =-440=
Az P 4+6=2

An=- 1 _34=-(-4+12)=-18

1 3
= =-440=
Az P 4+6=2

3
-3
-4



11
Ags=- =
27022 -4

Asz1=(-12+6)=-6
A32=-(6-4)=-2
Asz=(-3+4)=1
adj A=(Aij)"
-27 16 -6
-8 5 -2=adj A
5 -3 1
A-1 : '
= 7;461 dj
-27 16 -6
=, -8 5 -2
5 -3 1
27 -16 6
= 8 -5 2
-5 3 1
1 3 -4
(ii)B= 1 5 -1
3 13 -6

|B|=1(-30+13)-3(-6+3)-4(13-15)
=1(-17)-3(3)-4(-2)

=-17+9+8

|B|=0.

Bis asingular matrix

~ B-1does not exists.

Example: 5.14

fA= 2 3 verify that A(adj A)=(adj A)A=det(A)|
4 8

70



Solution:
2 3
4 8

|A|=16-
12

Let A=

|A|=4

adj A= 8_ =3

4 2
2 33 -3
4 8 -4 2
16-12 -6+6
32-32 -12+16

Ax(adjA)=

_4 0

0O 4

. _ 8 -3 2 3
(adj A)xA= 4 2 4 8

16-12 24 -24
~8+8 -12 +16
4 0
0 4

0

4] = é 1

4 0

0 4

~A(adj A)=adj A(A)=det |

Hence it proved

Determinant of amatrix:

Determinant of a square matrix of may be denoted by det Aor |A]
or
A.Determinant of a square matrix oforder 1,ie.A= a

Det A=|A|=a

Determinant of 2x2 matrix(i.e.,of order 2)



Ay Ai2
A=
ajrq

|A| =annaFan-
2
a12 Minor and co-

factor:

Let A=[aij]mxn.The minor of an element aij of determinant of a matrix A
is the determinant formed by suppreving the ithrow and the jthcoloumn
in which the element aij exists.

The minor of the element aijis denoted by Mij.

The minor of the element of a determinant of n is a determinant
of order(n-1).

The cofactor of an element aijis denoted by Aijjis defined as Aij=(-
1)*Mij.

For example: The minor and co-factor of the elements ai1,a22 and ass of
the eleméht. @12 Qi3
A=Qajz1 Apy Q33
ds; Qa3 ass
i1 QA2 Qa3
A=dy; az; QA3z3
ds; a3z ass

Can be obtained as

follows

a
Mii(minor of all)= 22

asz2 ass

3
=d22d33-d23d32

Ai1(co-factor ofa11)=(-1)2+2 M2z

iy Qi3
Mz2(Monior of az)) =
ajzq
a,
=d11d23-d13d31 3

Az(cofactor of az2)=(-1)2+2Myx,

=+(a11@23-a13a31)



ai

32 ) 2. 1
M (monior ofa )= %21

a3

a,
=di11d23-d13d21 3

Asz(co-factor of a32)=(-1)3+2 M32=-(a11a23-a13a21_
Expansion of the Determinant:

The determinant A of a matrix Acan be expressed as the sum of
the products of elements of any row(or coloumn) by their
corresponding co- factors.

A=a11A11+a12A12+a13A13

_ az> _a az1 dszs a az1 Az
1asz, @ass 12 a3q ass 13 as,
3 aszq

A11 A2Q33 = Ap3A3p — A1y A1Q33 — Ap3A31 + Ay13(aAr1a3; -
a;as1)

3
A= (-1) aijMij

j=1

3
= aij{(-1)" Mij}
j=1



(A-1T= AT -1

5. Atis an orthogonal matrix.



UNIT V

GRAPH THEORY

5.1 GRAPHS AND BASIC TERMINOLOGIES
A graph is a mathematical concept which can be used to model many

concepts from —the real world.
A graph consists of a pair of sets, represented as G = (V, E), where V is a
non-empty set of vertices (also called nodes) and E is a set of edges

(sometimes called arcs).
An edge can be represented as a pair of nodes (u,v) indicating an edge

from node u to node v.

Two vertices/nodes x and y of G are connected if there is an edge xy
between them, and these vertices are then called adjacent or neighbour
vertices/nodes. Here, the nodes x and y are called the endpoints of the edge.

X ey

In a graph G, a node which is not adjacent to any other node is called
an isolated node.

A graph is finite if it has a finite number of vertices and a finite number of
edges, otherwise it is infinite.

If G is finite, G(V)denotes the number of vertices in G and it is called the

order of G.
Similarly, E(G) denotes the number of edges in G and it is called the size of G.

The graph shown in figure 5.1has four vertices a,b, ¢ and d.
(a,b) is a pair of vertices which are connected, and this connectivity represents an

edge between them. Now a andb are the end points of the edge (a, b).



Neighbours of vertex a in this graph are b and c as there are edges from a to
b and atoc.

Vertex d is the isolated vertex, as it is not adjacent to any other vertices.
It IS an example of finite graph and its

Orderof Gis4asV ={a, b, c,d}.

d

A

b C
Figure 5.1 A graph with isolated vertex

1. Undirected and Directed Graphs

Graphs may be directed or undirected.

A graph is directed (or digraph) when direction of edge from one vertex to
another is defined, otherwise it is an undirected graph.

Undirected edge between vertices u and v is expressed as (u, V).

Directed edge between vertices u and v is expressed as <u,v>

A simple directed graph is shown in Figure 5.2

a
51 : [

Figure 5.2 Simple Directed Graph



2. Weighted Graph

A weighted graph associates a value (weight) with every edge in the

graph.

In other words, when a weight (may be cost, distance, etc) is associated
with each edge of a graph, then it is called as weighted graph, otherwise

unweighted graph.

Figure 5.3 edee-labeled graph

3. Self-Edge or self —Loop

In graph theory, aloop (also called aself-loopor a "buckle") is

an edge that connects a vertex to itself. A simple graph contains no loops.

A graph with self loop is shown Figure 5.4.

C d
/\\\
a b
Figure 5.4

4. Multiple or parallel Edges
If a pair of nodes is joined by more than one edge, then such edges are

called multiple or parallel edges.


https://en.wikipedia.org/wiki/Weighted_graph
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Simple_graph

In undirected graph, two edges v; ,v; and v, = v, are parallel edges

ifv,=vy,and v; =v,.

a ; (b)
: (&)

(a) Undirected graph with (b) Directed graph with

parallel edges parallel edges

Figure 5.5

In the directed graph, the edges between vertices a and b parallel
edges. The edge pair between the vertices b and ¢ are not parallel edges,

since the directions of the edge pair are opposite.

5. Path in a Graph

A path in a graph is a sequence of vertices such that from each of its vertices
there is an edge to the next vertex in the sequence. Clearly, vertices as well as
edges may be repeated in a path.

A path from u to w is a sequence of edges

u, vq ,vq, Uy ..,Vi_-1, W connecting u with w.

A path may be termed as walk also.

The number of edges in a path is termed as its length.

For example,(a, b), (b,b), (b, d), (d, ), (c, b), (b, d) is one path of the graph
as shown in Figure 5.4. and its length is 6.

A path with no repeated vertex is called a simple path.

In Figure 5.4. (a, b), (b, d), (d, ¢) is simple path.

A path with no repeated edge is termed as trail.



In a closed trail, the first and the last vertices are same.

A closed path is a path that starts and ends at the same point, otherwise the

path is open. Edge repetition is allowed on the closed path.

In Figure 5.4. (a, b), (b, d), (d, ¢),(c,a) is a closed path.

A Cycle (circuit/tour) is a closed path of non-zero length that does not
contain any repeated edges. Vertices other than the end (i.e., start) vertex may
also be repeated.

In Figure 5.4, (a, b), (b, b), (b, d), (d, ¢),(c, a) is acycle.

A simple cycle is a cycle that does not have any repeated vertex except the
first and the last vertex. (a, b),(b, d), (d, ¢),(c, a) is an example of simple cycle.

A graph without cycles is called acyclic.
A tree is an acyclic and connected graph.
A forest is a set of trees.

6. Connected Graph

A graph is called connected if and only if for any pair of nodes u, v, there is
at least one path between u and v. Otherwise, it is disconnectecd.

Clearly, the graph in Figure 5.4 is a connected undirected graph, whereas the
graph given in Figure 5.1 is disconnected.

7. Types of Connectivity in Graphs

A connected graph must have at least two vertices.

A graph is strongly connected if and only if every pair of vertices in the
graph are reachable from each other. i.e., if there are paths in both directions
between any two vertices.

Otherwise, the graph is of weakly or unilaterally connected.

The graph in Figure 5.6(a) is an unilaterally connected graph, as it has a path
from a to ¢ but no path exists from c to a, and so on.

A graph is strictly weakly connected if it is not unilaterally connected. Thus,
a strictly weakly connected graph may have many sources and sinks
(destinations). The graph given in Figure 5.6(b) is an example of strictly weakly
connected graph.



(a) (b)
Figure 5.6
8. Simple Graph, Multi — Graph, and Pseudo-Graph

A directed or undirected graph which has neither self-loops nor parallel
edges is called simple graph.

However, cycle(s) is (are) allowed in a simple graph.
Further, a simple graph may contain isolated vertex also.

The graph as shown in Figure 5.7(a) is a simple connected graph, since it
has no self loop and parallel edges.

Further, the graph in Figure 5.6 is a simple directed graph, as it has no self-loop
or parallel edges. On the other graph in Figure 5.1 is a simple disconnected graph.

multigraph

(a) (b) (c)
Figure 5.7



Any graph (directed or undirected) which contains some parallel edges is
called a multigraph. In multi-graph, no self-loop is allowed but cycle may be
present.

Figure 5.7 (b) is an example of multi-graph, since it has parallel edges but no
self loop.

A directed or undirected graph in which self-loop(s) and parallel edge(s)
are allowed is called a pseudo-graph. Figure 5.7 (c) is an example of pseudo-
graph.

9.Degree of vertex

The degree of a vertex of an undirected graph is the number of edges
incident on itcounting self loop twice. The degree of a vertex G is denoted by
degg(V).

For example In the undirected graph in Figure 5.4, the degree of a [i.e., degs(a)
Is 2, degree of b [i.e., deggs(b)] is 5 (since there is a self-loop at b), degree of ¢ is
3 and degree of d is 2.

In directed graph G, we consider two types of degrees of vertices: (a) in-
degree and (b) out-degree.

The in-degree of a vertex v of G, denoted by degs-(Vv), is number of edges

moving into that vertex.
The out-degree of v, denoted by deg +(v)iGs the the number of edges

moving out from thatvertex.
The sum of the in-degree and the out-degree of a vertex is called the total
degree of that vertex.

For example:

In the directed graph in figure 5.6(a),the in-degree of 1,degs-(1) is 0(zero)
and but its out-degree, deg (V) is 1.

Hence the total degree of 1 is degs-(1) + degG+(1) =2.

A vertex with zero in-degree is called a source vertex and a vertex with
zero out-degree is called sink vertex.

A vertex of degree 0(zero) is called isolated vertex.

A vertex is pendant vertex if and only if its degree is 1.



The vertex d in Figure 5.1 is an isolated vertex, as its degree is zero,

whereas the vertex 1 of the graph in Figure 5.7(c) is a pendant vertex (because
its degree 1).

10. Degree Sequence of a Graph

Let G be a graph with vertices vi, V2,vs, ...V,. The monotonically increasing

sequence (dy, do, d3, ...d,), where di= degg(Vi) is called the degree sequence of the
graph G.

The degree sequence of the graph in figure 5.4 is (2,2,3,5).
Note :

The degree of a graph G is the maximum of the degrees of all nodes in G.

If the number of edges m = O(n) (where n is the number nodes in the
graph), then the graph is said to be sparse.

If m is larger than linear order of n, i.e., m = 0(n?) (but as long as there are
no multiple edges), then the graph is called dense.

Theorem 5.1

A simple graph with n > 2vertices contains atleast two vertices of the
same degree.
Proof :

Let G be a simple graph with n > 2vertices.

Since G is a simple graph ,it has no loop and parallel edges.
We know that, the degree of a vertex of a simple graph G on n vertices cannot
exceed n-1.

So, degree of each vertex is < 1.

Assume that all the vertices of G have distinct degrees.

Thus, the degrees, 0, 1, 2, 3,....,n-1,are possible for n vertices of G.

Let u be the vertex with degree 0.Clearly,u is the isolated vertex.

Let v be the vertex with degree n-1,then v must have n-1 adjacent
vertices.



In fact, it is possible if the vertex v is adjacent to each vertex of the graph
G, it is also adjacent to u. But it is assumed that u is an isolated vertex. i.e., it is
not adjacent with any vertex of G.

Hence ,either u is not an isolated vertex or the degree of v is not n-1.

So, contradiction occurs on the assumption of different distinct degrees of
vertices of G.

Thus, the contradiction proves that a simple graph contains at least two
vertices of same degree.

Note :

The above theorem can be clearly understood by taking some examples.
(i)  Suppose, the simple graph G has two vertices v; and va.

Since it is a simple graph, G has no loop or parallel edges.

First, consider that both the vertices are isolated.

Hence,deggsv, =deg¢ v, = 0.

So, both the vertices have same degree 0.

Second, suppose that they are adjacent to each other(but no parallel
edges).

Hence,deggsv, =degg¢ v, = 1.

So, both the vertices have same degree 1.

(i)  Suppose, the simple graph G has three vertices vy, voand vs.
The graph G is a simple graph, so it has no loop or parallel edges.
First, consider that all the vertices are isolated.
Hence,degsv, =degg¢ v, =degg vs = 0.
So, at least two vertices (here all the vertices)have same degree 0.
Second, suppose, one vertex is isolated and the remaining two are
adjacent to each other.
Then, degree sequence is(0,1,1) and it means at least two vertices out of
three have same degree.
Third, suppose G has no isolated vertices out of three.
Then, degree sequence is (1,1,2) and it means at least two vertices out of
three have same degree.
Hence, it is true for a simple graph with any number of vertices.
The above theorem is true for both directed as well as undirected graphs.



Theorem 5.2(The Handshaking theorem)
If G=(V,E) is a graph with e number of edges, then
vev degg v = 2e
I.e., the sum of degrees of the vertices of G is always even.

For directed graph,

dege v =deg” v +deg* v
vevV vevV vevV

I.e., the sum of degrees of the vertices is the sum of the in-degrees and the out-
degrees of the vertices.
Proof :

Let G be an undirected graph.

The degree of a vertex of G is the number of edges incident with that
vertex.

Now, every edge is incident with exactly two vertices.

Hence, each edge gets counted twice, one at each end.

Thus, the sum of the degrees equals twice the number of edges.

Let G be a directed graph.

Then in-degree and out-degree of each vertex of G are considered.
However, the sum of the in-degree and out-degree of a vertex is the total

degree of that vertex.
Further, every edge is incident with exactly two vertices. So, here also,
each edge gets counted twice: one as in-degree and the other as out-degree.
Thus, the sum of the degrees(in-degrees and out-degrees) of all the

vertices equals twice the number of edges.



Note:
(i)  The name of this theorem is handshaking because if several people

shake hands, the total number of hands involved must be even(since
for every handshaking, two hands are required).

(i)  This theorem applies even if multiple edges and self-loops are present
in graph.

(ili)  The theorem it is true for both connected and disconnected graphs.

(iv) 1T sum of degrees of the vertices of a graph is given, then the number
of edges present in that graph can be computed. But the reverse is not
possible.

Corollary :
In a graph, total number of odd-degree vertices is even.

Proof:
Let G=(V,E) be a graph, where K; and K;are the set of vertices with odd

degree and even degree, respectively.

Now, deg§6= v, ,degG v+, i
ev €K deglG v;
2e =degG v, +degG v;

viEK vi€EK,
[Since sum of the degree of vertices is twice the number of edges(e), and it is
always even.]
Further, sum of the even-degree vertices is even.
e, y,ex,deglG v;is
even. Clearly,

viek,degG wv;iseven.

I.e., the sum of the odd-degree vertices is also even,



Again, ,, ek, de g G v; isevenonly if number of vertices of Ky is

even. Hence, the number of odd degree vertices is even.

[For example, suppose three vertices contain odd degrees
1,3,5respectively.Clearly,there sum may not be even, since number of vertices
Is 3 which is an odd number.]

Note:
The sum of two numbers(say,niand n;)gives even if both of n; and n; are either

odd or even. i.e., odd+odd=even, even+even=even.

Theorem 5.3

If G=(V,E) be a directed graph with e number of edges, then

vey deg~ v = y,ey degt v

I.e., the sum of the out-degrees of the vertices of G equals the sum of the in-
degree of the vertices, which equals the number of edges in G.
Proof:

Any directed edge of G contributes 1 out-degree and 1 in-degree. Also, a
self-loop contributes two degrees(1 out-degree and 1 in-degree).

Hence, the theorem is proved.

Example:
In the directed graph in Figure 5.6 (2),the in-degreeofl,deg G~ 1lisl
and its out-degreede g G* 11is1l.
Hence, the total degree of 1 is 2.
degG 1l=degG- 1+degG* 1=1+1=2,
degG 2=degG - 2+degG* 2=1+1=2,
degG 3=degG- 3+degG* 3=1+1=2.



Hence,de gG~ 1+degG- 2+degG- 3=1+1+1=3=
e(number of edges) and

degG* 1+degG* 2+de gG*+ 3 =1+1+1=3=e(number of

edges).

Example 5.1:

Show that the degree of a vertex of a simple graph G on n vertices cannot
exceed n-1.
Solution :

Let v be a vertex of G.
Since G is simple, no multiple edges or self-loops are allowed in G.

Thus v can be adjacent to at most all the remaining n-1 vertices of G.
Hence, v may have maximum degree n-1in G.
If the degree of v becomes more than(n-1),then there must have self-

loops or parallel edges in the graph, which is not allowed in simple graph.

So, the degree of a vertex v € V ( G ) in asimple graph lies in the range
0<degG v <n -1.
In particular, it is O if the vertex is isolated.

Note :

The above inequality is true for both directed and undirected simple graphs.

Example 5.2 :

Show that the maximum number of edges in a simple undirected graph
with n vertices is n(n-1)/2.
Solution :

By the handshaking theorem, we know

vev degge v =2e



where e is the number of edges with n vertices in the graph G.

This implies

d vy, +d vy, +d vy +-+d v, =2e..... (5.1)

Since maximum degree of each vertex in a simple graph can be (n-1).
Therefore, Eq. (5.1) can be written as

(n-1)+(n-1)+...+ up to n terms(considering maximum degree for each vertex)
=n(n-1)

=2e

Hence,

e(maximum number of edges in a simple graph with n vertices)=n(n-1)/2.

Note :
Maximum number of edges in a simple directed graph G is 2n(n-1)/2
=n(n-1),since in a simple directed graph, edges with opposite direction between

any pair of vertices are allowed.

Example 5.3 :

For a simple graph with n vertices, what is the minimum number of edges

required to ensure that the graph is connected?

Solution:

Let S cV be a set of vertices for which each vertex in S has degree 0.
If S has just one vertex(the minimum case of a disconnected graph),then(n-1)

edges are possible between S and (V-S).

Therefore, the maximum possible number of edges in a disconnected graph is



n(n-1)/2-(n-1) =(n-1)[(n/2)-1]
=(n-1)(n-2)/2
Clearly, the minimum number of edges in a connected graph is
= 1+(n-1)(n-2)/2
=[2 +(n>-3n+2)]/2.
= (n>-3n+4)/2

Note :To check the existence of a graph when its degree sequence is given.
1.1f the sum of the degrees of the vertices of the graph is not even, then graph

corresponding to the given degree sequence cannot be drawn (application of
handshaking theorem).

2.1f the total number of odd degree vertices (counted from the given degree
sequence) is odd, then graph corresponding to the given degree sequence cannot
be drawn.

Hence, for the existence of any graph G, the number of odd-degree vertices
must be even, and this point can be applied only for confirmatory checking. i.e.,
it is not compulsory to consider.

Now, if both the above-mentioned conditions are false(i.e., when the sum
of the degrees is even and the number of odd-degree vertices is also even, then
it is certainly possible to draw one graph, but it may not be possible to draw a
simple graph following the given degree sequence.

For checking the existence of a simple graph, we must concentrate on its

properties. Some examples on degree sequence are given below.

Example 5.4 :
Is there a simple graph corresponding to the following degree sequences?



@ (1,123
(b) (2,2,4,4)

Solution:

(a)

(b)

However,

exceed n-

The total number of odd-degree vertices in a graph is even.

The number of odd-degree vertices is 3.

Hence, no graph corresponding to this degree sequence can be drawn.

Sum of degrees=1+1+2+3=7, which is odd.
By handshaking theorem, the sum of degrees of any simple graph

must be even.

Hence, no graph exists for this case.

The sum of the degree of the vertices is 12 which is even.

Also, the number of the odd-degree vertices is 0 which is even.
So, a graph can be drawn, using the given degree sequence.

Now, let us check if any simple graph is possible to draw or not.
The number of vertices is 4.

the degree of any vertex in a simple graph G on n vertices cannot

1, the degree of any vertex cannot be 4.

Hence, no simple graph corresponding to the given degree sequence can be

drawn.

Example

55:

Does there exist a simple graph with seven vertices having

degrees(1

Solution:

3,3,4,5,6,6)?

The sum of the degrees of the vertices is 1+3+3+4+5+6+6=28 and it is an

even num

ber.

Also, the number of odd-degree vertices is even.



So, the graph corresponding to the given degree sequence exists.

Now, let us check whether any simple graph exists or not.

Assume that it exists. Here, two vertices out of seven have degree
6.50,each of these two vertices is adjacent to the rest six vertices of the graph.
Accordingly, the degree of each vertex should be at least 2. i.e., it may not be
1.But in the degree sequence, no vertex with degree 2 is provided. Moreover, a
vertex with degree 1 is given.

Therefore, we arrive at a contradiction in out assumption. Thus no simple

graph, following the given degree sequence, can be drawn.

Example 5.6 :
For the graph G as shown in figure 5.8, write the degree sequence of G.

Figure 5.8
Hence, find the number of odd-degree vertices and the number of edges in the
graph G.
Solution:

The degree sequence is given as {3,3,3,2,2,1}.
Hence, the number of the odd-degree vertices is 4,which is even as per the

corollary of handshaking theorem.
Now, the sum of degrees of all vertices is 2e, where is the number of

edges. So, we get



3+3+3+2+2+1=2¢

2e =14

e=7

Hence, the number of edges in the given graph is 7and can be verified by

counting.

Example 5.7 :

For each of the following degree sequences, determine if there exists a
graph whose degree sequence is given. If possible draw the graph or explain why

such a graph does not exist.
i.(1,1,1,1,1)
ii.(1,1,1,1,1,1)
Solution
(i)  The given degree sequenceis (1,1, 1, 1, 1).
Sum of the degrees of the vertices=1+1+1+ 1+ 1=5=o0dd number.
Hence, it is not possible to draw any graph corresponding to the degree
sequence (1,1,1, 1,1).
(i)  The given degree sequenceis (1,1,1,1, 1, 1).
Sumofdegrees=1+1+1+1+1+1=6=even number
Therefore, e = number of edges = 6/2 = 3.
Here, n (number of vertices in the graph) = 6.
Also, number of odd-degree vertices is 6 and it is an even number.
Hence, the graph corresponding to the given sequence (1 ,1,1,1,1,1) can be

drawn.
Example 5.8 :
Let G be a simple graph with 12 edges. If G has 6 vertices of degree 3 and the

rest of the vertices have degree less than 3, then find the (a) minimum number of



vertices and (b) maximum number of vertices.

Solution:
Number of edges e = 12

Suppose the total number of vertices in G is p.
Given that 6 vertices have degree 3.

Hence, the sum of degrees =3 *6 = 18.
The rest (p — 6) vertices have degree less than 3. i.e., their degree lies
inclusively between 0 and 2.
Here, to find the minimum number of vertices, (p — 6) vertices must have
maximum degree [i.e., 2 ]
Therefore, applying the handshaking theorem, we get
18+2 p -6 = 2e
18+ 2p - 12 = 24

2p +6=24
2p =18
>p=29

Minimum number of vertices = 9
To calculate the maximum number of vertices, (p — 6) vertices must have

maximum degree [i.e., 1]

Sumofdegrees=18+ p -6 =2e = 24

p +12=24
>p =12

Maximum number of vertices = 12

5.2 TYPES OF GRAPHS

Some important types of graphs are introduced here. These are often

used in many applications.



5.2.1 Null Graph

A graph which contains only isolated nodes is called a null graph. i.e the
set of edges in a null graph is empty. Null graph on n vertices in denoted by

N,Null graph (N3) with 3 vertices is shown below

ea

o®

5.2.2 Complete Graph

A graph G is said to be complete if every vertex of G is connected with
every other vertex of G. i.e., every pair of distinct vertices contains exactly one

edge. Complete graph on n vertices is denoted by K,,.

Some complete graphkK,, K5, K3, K4, Ks, Kg, K7are shown below.



K K, K
Figure 5.9

A complete graph G is a simple graph and it may be directed as well as
undirected. Any complete graph K, with n vertices has exactly n(n — 1)/2

edges.

Directed graph Ksis shown in Figure 5.10.

AN

Figure 5.10
5.2.3 Regular Graph

A graph in which all the vertices are of same degree is called a regular
graph. If the degree each vertex is r, then the graph is called a regular graph of
degree r, and it is denoted byR,. A regular graph may be directed or undirected.
When it is directed, then the degree of each vertex is computed as the sum of its
in-degree and out- degree.



A complete graph is a regular graph of degree n-1 or it is called (n-1) regular
graph. Obviously, if a graph is null graph, then it is 0 regular (as degree of each

vertex is 0)

2-regular graph with 5 vertices is given in Figure 5.11
o /.\

.“-\-\.\_\_\__ )
e 1
Figure 5.11

Note:

If a graph G with n vertices is r-regular, then the number of edges of G is

r*n/2.

Since the graph has n vertices n vertices are r-regular, the sum of the degree
of the vertices is n * r. Also, sum of degrees of a graph equals to twice the number
of edges. Hence, the number of the edges of the regular graph with n vertices isr *
n/2.

Example 5.9
Find the number of edges of a 4-regular graph with 6 vertices.
Solution :

Heren=6andr =4.

Number of edges e = r *’z-l= 4 x

N | o
1
=
N

Example 5.10

Is it possible to draw a 3-regular graph with 5 vertices.



Solution :

Number of verticesn =5
r=3

Sum of the degrees of the vertices =5 * 3 = 15, which is not divisible by 2.

Therefore, it is not possible to draw a 3-regular with 5 vertices.

Note :A graph with n vertices is r-regular if either r or n or both are even.

Cycles

The cycle C,, ,n = 3, consists of n vertices and n edges so that the

second endpoint of the last edge coincides with the staring vertex.

A cycle with 6 vertices is shown below.

5.2.4 Bipartite Graph

A graph G = (V, E) is a bipartite graph if the vertex set V can be
partitioned into two disjoint subsets, say, Vi and Vsuch that every edge in E

connects a vertex in Vito the vertex in V..

But no edge in G connects either of the two vertices in V; or two vertices in Va.



(V1, Vo) is called a bipartition of G. Some examples of bipartite graph are

shown below.
L ] & ]
o L
° * e o
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Example 5.11

Show that the graph Cg is bipartite.

Solution:

Cycle graph

A cycie graph of length 8

In this graph, the two distinct sets of vertices are shown in distinct colours. Hence,

Csis bipartite.

Procedure to check whether a graph G is bipartite or not

Step 1 Arbitrarily select a vertex from G and include it into set 1.
Step 2 Consider the edges directly connected to that vertex and put the other end

vertices of these edges into set 2.



Step 3 Now, pick up one vertex from set 1and consider the edges directly

connected to that vertex, and put the other end vertices of these edges into
set 2.

Step 4 At each step, step 2 and step 3, check if there is any edge among the
vertices of set 1 or set 2.

If so, construction of sets is stopped and the given graph is not bipartite
graph, then return.

Else continue step 2 and step 3 alternately until all the vertices are included

in union of set 1 and set 2.

Step 5 If two computed sets following the above steps are distinct, then it is
bipartite.

5.2.5 Complete Bipartite Graph:

A Dbipartite graph G is a complete bipartite graph if there is an edge between
every pair of vertices taken from two disjoint sets of vertices (one vertex from one
setV;and the other from set V,).

Complete bipartite graph G is denoted by Kn,, where m and n are the
number of vertices in two distinct subsetsViand V5.

Some examples of complete bipartite graphs are shown in Figure.

(@) K11 (b) K2 () K3 (d) K W



Example 5.12
How many edges do the complete bipartite graph, Ky, , have?

Solution:
The vertex set of K, , consists of two disjoint sets A and B.
A contains m vertices and B contains n vertices.
Each vertex in A is adjacent to each vertex in B.
No two vertices either in A or in B are adjacent.
Hence, the degree of each vertex in A is n, and the degree of each vertex in

Bism.
Therefore, the sum of the degrees is 2 * m* n, and so there are m* n edges

(as per the handshaking theorem).

Note :Complete bipartite graph Kn, has m + n vertices and m * n edges.

Km, nis regular if m=n.

Example 5.13
Prove that a graph which contains a triangle cannot be bipartite.

Solution

In a bipartite graph, the vertices should be divided into two
distinct subsets.

The number of vertices of the given graph is 3, as it is a triangle. So, it is
not possible to divide the vertices into two disjoint set of vertices since each edge
IS joined by the rest two edges.

Hence, this graph may not be a bipartite graph.



5.3 SUBGRAPH
If G and H are two graphs with vertex sets V(G) and V(H) and edge sets

E(G) and E(H),respectively, such that V(H)< V(G) and E(H)SE(G), then we say

that H is a subgraph of Gor G is a super-graph of H.
In other words, if H is a subgraph of G, then all the vertices and the edges of

H are in G and each edge of H has the same endpoints as in G.
Now if V(H)=V(G) and E(H) C E(G), then we say that H is a spanning

subgraph of G.
A spanning subgraph is a subgraph that contains all the vertices of the original

graph.
If H is a subgraph of G, then

(@  All the vertices of H are in G.

(b) All the edges of H are in G.

(c) Eachedge of H has the same endpoints in H as in G.

For example
A graph G is shown below and its one subgraphis in Figure (b), but the

graph shown in Figure (c) is not a subgraph of G, as no edge between vsand v, is

present in the original graph G.

Note :

Suppose a graph G has n number of vertices (i.e., V| = n) and m number
of edges (i.e., |E|=n)

Then,  number of non-empty subsets of V as 2"- 1 and



number of subsets of E as 2™.
Thus, the total number of non-empty subgraphs of G is (2"- 1) * 2™,

Example 5.14
Prove that the number of spanning subgraphs of a graph G with m vertices
is 2™
Proof :
Number of spanning subgraphs with 0 (zero) edge and m vertices is "Co
Number of spanning subgraphs with 1 edge and m vertices is "C,.
Number of spanning subgraphs with 2 edges and m vertices is "C..

...............

Number of spanning subgraphs with m edges and m vertices is "Cp,.
Total number of spanning subgraphs

=MCo+ MC1+ MCo+ e e e +MC,

= 2" (by binomial theorem)

Example 5.15
For the graph G draw the subgraphs

@ G — e (here, e is one edge)
) G — a (here, a is one vertex)

. X

Solution :

The subgraphs are shown below

M
o
o



G-e G-a

Example 5.16 :Draw some subgraphs of the graph

Q
gnr -

5.4 OPERATIONS ON GRAPH

Solution :

In this section some operation on graph are discussed.

i Union of two graphs G1 and G2 will be another graph G such that
V(G1luG2) =V(G1) uV(G2) and E(G1nG2)= E(G1) nE(G2)
If no common vertex is present in between G1 and G2 then the resultant

graph will be disconnected.

S [ I

Gl G2 GlUG2

Il Intersection of two graph G1 and G2 will be another graph G such that



VG10G2=VG1 nvlv GZ ¢CDandEGlﬂG2

=E G]_ N
E(Gz)I I
Gl G2 Gl

ii.  Sum of two graphs nG2

letG, = V4., E; and G, = V,, E1 be two graphs suchthatVinV,z ®.
The sum of two graphs G; and G, is G1+G2 is defined as the graph G in which
vertex set is Vi+Vzand the edge set consists of the edges in E; and E; and the
edges joining each vertex of V; with each vertex of V..

o C
!
a d
®
b
[ ] e
e
G1 G2 G1+ GZ

Iv. Complement: The complement G' of G is defined as a simple graph (parallel
edge and self-loop are ignored) with the same vertex set as G, and where

two vertices u and v are adjacent only when they are not adjacentin G.

[ ]

G G

V. Product of two graphsG; and Gyis defined as G = (V1 U V,, Vix



V2)where Vi U V,is the union of the vertex sets V; of Giand V»0f G,,
and Vi x V;is the cross product to compute the edge set of the

resultant graph G.

5.5 REPRESNTATION OF GRAPH

Diagrammatic (graphical) representation of a graph is very convenient for
visual study, but it is practically feasible only when the number of vertices and
edges of the graph is reasonably small. So, we need some other reasonable ways
to represent graphs with large number of vertices and edges. These
representations are also expected to be useful in computer programming. Some

representations for undirected as well as directed graphs are discussed below.

1. Matrix (Adjacency Matrix) Representation

The adjacency matrix is commonly used to represent graphs for computer
processing. In such representation, an n x n Boolean (1,0) matrix is used where a 1
at position (u, v) indicates that there exists an edge from vertex u to v, and a 0 at

position(u, v) indicates that there is no edge reachable directly from u to v.

If the graph is undirected, then its corresponding adjacency matrix will be

symmetric.

(i)  Matrix presentation of undirected graph
If an undirected graph G consists of n vertices (assuming that the graph has
no parallel edge), then the adjacency matrix of G is an n x n matrix A= a;; and

defined as follows:

l,if thereisan undirectededge
betweenviand vj
0, ifthereisnoedge between
verticesviand vj

al’, =
J

Some observations from matrix representation of undirected simple graph:



(a)a; j=a; foralliandj, i.e., the matrix is symmetric.
() Diagonal elements of the matrix are zero (0) (as the simple graph

possesses no self loop).
) The degree of a vertex is the sum of the 1s in that row.

@ Let G be a graph with n vertices: Vi, V2, V3,...,V,, and A be the

adjacency matrix of G. Let B be the matrix computed as follows:
B =4+ A2+A3+--+A"(n >1)
Now, B is connected if and only if B has no zero entry.

(i)  Matrix representation of directed graph

Let G a be a directed graph (digraph) consists of n vertices (assuming that the
graph has no parallel edge. The adjacency matrix of G is an n X matrix A

= a;,; and is defined as follows

a;,; = {1,if there is a directed edge between vertices viandy;
0, otherwise
Some observations from the matrix representation of directed simple graph.

a.a;;j# aj; foralliandj

b. Diagonal elements of the matrix A are 0

c. The sum of 1 in any column j of A is equal to the in-degree of vertex v;.
d. Thesumof 1 inany row i of A is equal to the out-degree of vertex v;

5.5.2 Incidence Matrix Representation of Graph
Let G be a graph with n verities and e edges.

The incidence matrix is defined as an nxe matrix B=[b;;] where

l,if jthedge ejisincidentwiththeitvertex

bi; = .
"' "0, otherwise



Example 5.17 :

Write the incidence matrix of the graph G given in figure

Figure 5. 13

Solution ;
The incidence matrix is

Edge el e2 e3 e

Vertex 1 |1 1 1 0

2 |1 0 0 0

3 1|0 1 1 1
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DISCRETE MATHEMATICS
SECTION - A (10 x 2 = 20 Marks)

Answer All Questions

. Define Binary Relation.
JAfA={2,3,4}, B={3,4,5,6,7} and R = {(2,4),(2,6),(3,3),(3,6),(4,4)} then find the

inverse of the relation R.

Define One-to-one Onto function.

Define constant function.

State the De Morgan's Laws.

When a proposition is called a Tautology?
Define an Orthogonal Matrix.

Define a Scalar Matrix.

Define degree of a vertex.

. Define a Connected graph.

SECTION =B (5 x 5 = 25 Marks)
Answer All Questions
@ IfA={1,4,5}and R ={(1,4),(1,5),(4,1),(4,4),(5,5)} then find Mg

OR

(b) IfA={1,2,3,4,5}and R = {(1,1),(1,2),(2,3),(3,5),(3,4),(4,5)} then determine

(i) R? (i) R”
@ Explain Onto Function with neat diagram.
(b) Prove that ho(gof) = (hog)of
@ Construct the truth table to show that (P — Q) & (7Q —» 7P)is a

OR

(b) Tautology. OR

@) What are the Basic Set of Logical Operators? Explain.

Show that the matrix A= 2 3 satisfies the equationA? —4A+1=0 OR
1 2
-5 -8 0
(b)  Show that the matrix A= 3 5 Olsinvolutory.
1 2 -1
(@) State and prove the handshaking theorem.
(b) Explain the Operations on graphs.

SECTION - C (3 x 10 = 30 Marks)
Answer Any Three

16. Describe the Classification of Relations.
17. If X = {a,b,c}and f : X — X such that f = {(a,b),(b,a),(c,c)} then find (i) 2 (ii) 2 (iii) 3

(iv) f

18. Find the Principal Conjunctive normal form for the formula
(7(P—Q)) — 7(Q" 7R)

19. Explain the different types of Matrices with examples.

20. Explain the different types of graphs.

OR



