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Instruction Code
• The internal Organization of defined by the sequence of 

microoperations it performs on data stored in its registers.

• The general purpose digital computer is capable of executing 
various microoperations and to instruct the specify sequence of 
operation it should perform.

• The user controls the process by means of program

• Program – set of instructions that specify the operation and the 
operands and the sequence by which the process has to occur.
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• Computer instruction – it is the binary code that specifies the 
sequence of microoperation for the computer.

(i) instruction code together with data are stored in 
memory.

(ii) the computer reads each instruction from memory 
and places it in the control register.

(iii)the control register then interprets the binary 
code of the instruction and proceeds to execute it by issuing a 
sequence of microoperation.

(iv) Every computer has a unique instruction set.
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• Instruction code : is a group of bits that instructs the computer to 
perform a specific operation.

• The most basic part of the instruction code is the operation  part.

• Operation code – is a group of bits that define operations such as 
add, subtract,multiply and divide.

• The number of bits required for the operation depends on the 
number of operations  available in the computer.

• For 2n operations we need n bits.
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Relation between computer operation and 
microoperation
• The operation part of the instruction code specifies the operation 

to be performed on the data stored in processor register.

• So, the instruction code must also specify the memory address 
where the operands are found.

• The control unit receives the instruction from the memory and 
initiates a sequence of microoperation to be performed.

• The operation code is sometimes called as microoperation.
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Stored program organization
• Simplest way to organize a computer is to have one processor 

register and instruction code with two parts.

Opcode       
Address Binary operand

15                              12 11                              
0

Tells where to find the 
operand in the memory.

Eg : memory unit – 4096 words
12 bits – address since, 212 =4096

16 bits for instruction 
code
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Memory 4096 x 16

Instruction
(program)

Operands
(data)

Processor Register (AC)
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• Some instructions does not have the operand part , in such cases 
it can be used for other purpose.

• Eg: increment AC, clear AC, Complement AC

• Immediate instruction

• Direct addressing

• Indirect addressing

• Effective address
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Direct Addressing
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In-Direct Addressing
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Computer Registers
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Common Bus System

The basic computer has eight registers, a memory unit, and a control unit . Paths must be provided to transfer information from one register to another and between memory and registers.

The number of wires will be excessive if connections are made between the outputs of each register and the inputs of the other registers.

A more efficient scheme for transferring information in a system with many registers is to use a common bus.

The connection of the registers and memory of the basic computer to a common bus system. The outputs of seven registers and memory are connected to the common bus.

The specific output that is selected for the bus lines at any given time is determined from the binary value of the selection variables S2, S1, and S0.

The number along each output shows the decimal equivalent of the required binary selection. For example, the number along the output of DR is 3.

The 16-bit outputs of DR are placed on the bus lines when S2S1S0 = 011 since this is the binary value of decimal 3.

The lines from the common bus are connected to the inputs of each register and the data inputs of the memory. The particular register whose LD (load) input is enabled receives the data from the bus during the next
clock pulse transition.

The memory receives the contents of the bus when its write input is activated. The memory places its 16-bit output onto the bus when the read input is activated and S2S1S0 = 111.

Four registers, DR, AC, IR, and TR, have 16 bits each.

Two registers, AR and PC, have 12 bits each since they hold a memory address. When the contents of AR or PC are applied to the 16-bit common bus, the four most significant bits are set to 0's.

When AR or PC receive information from the bus, only the 12 least significant bits are transferred into the register. The input register INPR and the output register OUTR have 8 bits each and communicate with the 

eight least significant bits in the bus.

INPR is connected to provide information to the bus but OUTR can only receive information from the bus.

This is because INPR receives a character from an input device which is then transferred to AC. OUTR receives a character from AC and delivers it to an output device. There is no transfer from OUTR to any of the 

other registers.

The 16 lines of the common bus receive information from six registers and the memory unit. The bus lines are connected to the inputs of six registers and the memory. Five registers have three control inputs: LD 

(load), INR (increment), and CLR (clear).
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This type of register is equivalent to a binary counter with parallel load and synchronous clear. The increment operation is achieved by enabling the count input of the counter. Two registers have 

only a LD input.

•The input data and output data of the memory are connected to the common bus, but the memory address is connected to AR. Therefore, AR must always be used to specify a memory address.

•By using a single register for the address, we eliminate the need for an address bus that would have been needed otherwise. The content of any register can be specified for the memory data 

input during a write operation. Similarly, any register can receive the data from memory after a read operation except AC .

•The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of inputs. One set of 16-bit inputs come from the outputs of AC . They are used to implement register 

microoperations such as complement AC and shift AC .

•Another set of 16-bit inputs come from the data register DR. The inputs from DR and AC are used for arithmetic and logic rnlcrooperations, such as add DR to AC or AND DR to AC.

•The result of an addition is transferred to AC and the end carry-out of the addition is transferred to flip-flop E (extended AC bit). A third set of 8-bit inputs come from the input register INPR.

•Note that the content of any register can be applied onto the bus and an operation can be performed in the adder and logic circuit during the same clock cycle. The clock transition at the end of 

the cycle transfers the content of the bus into the designated destination register and the output of the adder and logic circuit into AC.

•For example, the two microoperations

•DR ← AC and AC ← DR 

•can be executed at the same time. This can be done by placing the content of AC on the bus (with S2S1S0 = 100), enabling the LD (load) input of DR, transferring the content of DR through the 

adder and logic circuit into AC, and enabling the LD (load) input of AC, all during the same clock cycle.

•The two transfers occur upon the arrival of the clock pulse transition at the end of the clock cycle.
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Computer Instructions
All Basic Computer instruction codes are 16 bits wide. 

The operation part of the instruction contains 3 bits and the meaning of the remaining 13 bits depend 

on the operation code encountered.

There are 3 instruction code formats:

•Memory-reference instructions take a single memory address as an operand, and have the format:
15  14                                  12  11                                              0

I     opcode              Address

If I = 0, the instruction uses direct addressing. If I = 1, addressing in indirect.

Register-reference instructions operate solely on the AC register, and have the following format:
15  14                                  12  11                                              0

•0 111                     Register operation

•Input/output instructions have the following format:

15    14                                             12  11

1    111                    I/O operaton
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Memory Reference – These instructions refer to memory address as an operand. The other operand is always accumulator. 
Specifies 12-bit address, 3-bit opcode (other than 111) and 1-bit addressing mode for direct and indirect addressing.

Example –

IR register contains = 0001XXXXXXXXXXXX, i.e. ADD after fetching and decoding of instruction we find out that it is a 
memory reference instruction for ADD operation.

Hence, DR ← M[AR] AC ← AC + DR, SC ← 0

3.Register Reference – These instructions perform operations on registers rather than memory addresses. The IR(14 – 12) 

is 111 (differentiates it from memory reference) and IR(15) is 0 (differentiates it from input/output instructions). The rest 12 bits 

specify register operation.

Example –
IR register contains = 0111001000000000, i.e. CMA after fetch and decode cycle we find out that it is a register 
reference instruction for complement accumulator.
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Input/Output – These instructions are for communication between computer and outside environment. The IR(14 – 12) is 111 

(differentiates it from memory reference) and IR(15) is 1 (differentiates it from register reference instructions). The rest 12 bits 
specify I/O operation.

Example –

IR register contains = 1111100000000000, i.e. INP after fetch and decode cycle we find out that it is an input/output 

instruction for inputing character. Hence, INPUT character from peripheral device.
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The set of instructions incorporated in16 bit IR register are:

1.Arithmetic, logical and shift instructions

(and, add, complement, circulate left, right, etc)

2.To move information to and from memory

(store the accumulator, load the accumulator)

3.Program control instructions with status conditions

(branch, skip)

4.Input output instructions

5. (input character, output character)
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Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a master clock, 

with the exception of the INPR register.

At each clock pulse, the control unit sends control signals to control inputs of the bus, the registers, and the ALU.

Control unit design and implementation can be done by two general methods:

•A hardwired control unit is designed from scratch using traditional digital logic design techniques 

to produce a minimal, optimized circuit. 

In other words, the control unit is like an ASIC (application-specific integrated circuit).

•A microprogrammed control unit is built from some sort of ROM. 

The desired control signals are simply stored in the ROM, 

and retrieved in sequence to drive the microoperations needed by a particular instruction.
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Instruction Cycle
• The program residing in the memory unit of the computer consists of a sequence of 

instructions. 

• Each instruction cycle in a basic computer  consists of the following phases:

(i)Fetch an instruction from memory.

(ii) Decode the instruction

(iii) Read the effective address from memory if the instruction has an indirect 
address.

(iv) execute the instruction.
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Fetch and Decode

• The sequence counter SC is cleared to 0, providing a decoded timing 
signal T0. 

• After each clock pulse the SC is incremented by 1, so that it goes 
through a sequence of clock pluses T0,T1,T2, and so on. 

• The microoperations for the fetch and decode phases can be specified 
by the following register transfer statements.

T0 : AR<- PC

T1: IR <-M[AR],PC=PC+1

T2:D0, ………D7 <-Decode IR(12-14), AR<-IR(0-11), I<-IR(15)

Initially, the program counter PC is loaded with the address of the first 
instruction in the program.
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To provide data path for the transfer of PC to AR at timing signal T0 to achieve the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs S1,S2,S0equal to 010.
2. Transfer the content of the bus to AR  by enabling the LD  input of AR.

The next clock transaction initiates the transfer from PC to AR since T0 =1. in order to implement the 
second statement.
T1: IR <-M[AR],PC=PC+1

It is necessary to use timing signal T1 to provide the following connection in the bus system.
1. Enable the read input of memory.
2. Place the content of memory unto the bus by making S2S1S0 = 111.
3. TRANSFER the content of the bus to IR by enabling the LD INPUT OF IR
4. Increment PC by enabling the INR input of PC.

THE next clock pulse initiates the read and increment operations since T1 = 1.
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Register reference instruction
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Address Sequencing
• Microinstructions are stored in control memory in groups, with each group specifying a 

routine.

• Each computer instruction has its own microprogram routine in control memory to generate 
the microoperations that execute the instruction.

• The initial address is loaded into the control address  register when power is turned on in the 
computer. This address is usually the address of the first microinstruction that activates the 
instruction fetch routine.

• The fetch routine may be sequenced by incrementing the control address register through 
the rest of its microinstructions. 

• At the end of the fetch routine, the instruction is in the instruction register of the computer.

• The next step is to generate the microoperations that execute the instruction fetched from 
memory.

• Each instruction has its own microprogram routine stored in a given location of control 
memory.

• The mapping procedure is a rule that transforms the instruction code into a control memory 
address
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• Incrementing of the control address register.

• Unconditional branch or conditional branch, depending on status 
bit conditions.

• Mapping process from the bits of the instruction to an address for 
control memory.

• A facility for subroutine call and return.

The address sequencing capabilities required in a control memory are:
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•Once the required routine is reached, the 
microinstructions that execute the instruction may be 
sequenced by incrementing the control address 
register
•Micro-programs that employ subroutines will require 
an external register for storing the return address.
•Return addresses cannot be stored in ROM because 
the unit has no writing capability.
•When the execution of the instruction is completed, 
control must return to the fetch routine
•This is accomplished by executing an unconditional 
branch microinstruction to the first address of the 
fetch routine. 
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Above figure 3.2 shows a block diagram of a control memory and the associated 
hardware needed for selecting the next microinstruction address. 

The microinstruction in control memory contains a set of bits to initiate 
microoperations in computer registers and other bits to specify the method by which 
the next address is obtained.

The diagram shows four different paths from which the control address register (CAR) 
receives the address. 
The incrementer increments the content of the control address register by one, to 
select the next microinstruction in sequence. 

Branching is achieved by specifying the branch address in one of the fields of the 
microinstruction. 

Conditional branching is obtained by using part of the microinstruction to select a 
specific status bit in order to determine its condition.
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•An external address is transferred into control memory via a mapping logic 
circuit. 

• The return address for a subroutine is stored in a special register whose value is 
then used when the micro-program wishes to return from the subroutine.

•The branch logic of figure 3.2 provides decision-making capabilities in the control 
unit. 
• The status conditions are special bits in the system that provide parameter 
information such as the carry-out of an adder, the sign bit of a number, the mode 
bits of an instruction, and input or output status conditions.

• The status bits, together with the field in the microinstruction that specifies a 
branch address, control the conditional branch decisions generated in the branch 
logic.

• A 1 output in the multiplexer generates a control signal to transfer the branch 
address from the microinstruction into the control address register.

• A 0 output in the multiplexer causes the address register to be incremented. 
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Mapping of an Instruction 

• A special type of branch exists when a microinstruction specifies a branch to the first word in 
control memory where a microprogram routine for an instruction is located. 

• The status bits for this type of branch are the bits in the operation code part of the instruction. 

•For example, a computer with a simple instruction format as shown in figure 4.3 has an 
operation code of four bits which can specify up to 16 distinct instructions. 

• Assume further that the control memory has 128 words, requiring an address of seven bits. 
• One simple mapping process that converts the 4-bit operation code to a 7-bit address for 
control memory is shown in figure 4.3.

• This mapping consists of placing a 0 in the most significant bit of the address, transferring the 
four operation code bits, and clearing the two least significant bits of the control address 
register. 

• This provides for each computer instruction a microprogram routine with a capacity of four 
microinstructions.
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•If the routine needs more than four 
microinstructions, it can use addresses 
1000000 through 1111111.

• If it uses fewer than four microinstructions, 
the unused memory locations would be 
available for other routines. 

•Figure 4.3: Mapping from instruction code to 
microinstruction address 

• One can extend this concept to a more 
general mapping rule by using a ROM to 
specify the mapping function.

• The contents of the mapping ROM give the 
bits for the control address register

R
.A

m
e

R
ay

an
,
H

o
ly

C
ro

ss
H

o
m

e
S

ci
en

ce
C

o
ll

eg
e,

T
h
o
o

th
u
k

u
d
i.

0
6
.0

8
.2

0
2
0



•One can extend this concept to a more general mapping rule by using a ROM to specify 
the mapping function. 

• The contents of the mapping ROM give the bits for the control address register. 
Microprogrammed Control 

• In this way the microprogram routine that executes the instruction can be placed in any 
desired location in control memory. 

•The mapping concept provides flexibility for adding instructions for control memory as the 
need arises.

Subroutines:
• subroutines are programs that are used by other routines to accomplish a 
particular task.
•A subroutine can be called from any point within the main body of the 
microprogram. 
•Many microprograms contain identical sections of code.
•Microinstructions can be saved by employing subroutines that use a common 
sections of microcode.
•Microprograms that use subroutines must have a provision for storing the return 
address during a subroutine call and restoring the address during a subroutine 
return.
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CENTRAL PROCESSING UNIT 

UNIT - II



General Register Organization:—

When a large number of registers are included in the CPU, it is most efficient to connect them
through a common bus system. The registers communicate with each other not only for direct data
transfers, but also while performing various micro-operations. Hence it is necessary to provide a
common unit that can perform all the arithmetic, logic and shift micro-operation in the processor.

The output of each register is connected to true multiplexer (mux) to form the two buses A & B.
The selection lines in each multiplexer select one register or the input data for the particular bus.
The A and B buses forms the input to a common ALU. The operation selected in the ALU
determines the arithmetic or logic micro-operation that is to be performed. The result of the micro-
operation is available for output and also goes into the inputs of the registers. The register that
receives the information from the output bus is selected by a decoder. The decoder activates one
of the register load inputs, thus providing a transfer both between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information flow through the
registers and ALU by selecting the various components in the systems.



R1 → R2 + R3

(1) MUX A selection (SEC A): to place the content of R2 into bus A
(2) MUX B selection (sec B): to place the content of R3 into bus B
(3) ALU operation selection (OPR): to provide the arithmetic addition (A + B)
(4) Decoder destination selection (SEC D): to transfer the content of the output bus into R1

These form the control selection variables are generated in the control unit and must be available
at the beginning of a clock cycle. The data from the two source registers propagate through the
gates in the multiplexer and the ALU, to the output bus, and into the into of the destination
registers, all during the clock cycle intervals.

Control Word:

There are 14 binary selection inputs in the units, and their combined value specified a control
word. It consists of four fields three fields contain three bits each, and one field has five bits. The
three bits of SEL A select a source register for the A input of the ALU. The three bits of SEL B
select a source register for the B input of the ALU. The three bit of SEC D select a destination
register using the decoder and its seven load outputs. The five bits of OPR select one of the
operations in the ALU. The 14-bit control word when applied to the selection inputs specify a
particular micro-operation.



Binary Code SEL A SEL B SEL D
000 Input Input None
001 R1

010 R2

011 R3 S S
100 R4 A A
101 R5 M M
110 R6 E E
111 R7

OPR & elect Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A-B SUB
00110 Decrement A DEC A
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Table: Encoding of ALU operation

Table: Encoding of Register selection fields.



Micro
Operation

SECA SEC B SEL D OPR Control Word

R1→ R2 – R3 R2 R3 R1 SUB 010 011 001 0010
1

R4→ R5 V R5 R4 R R4 OR 100 101 100 0101
R6→ R6 + 1 R6 - R6 MCA 110 000 110 0000

1
R7→ R1 R1 - R7 TSFA 001 000 111 0000

0
Output→ R2 R2 - None TSFA 010 000 000 0000

0
Output →

Input
Input - None TSFA 000 000 000 0000

0
R4→ SHL R4 R4 - R4 SHLA 100 000 100 1100

0
R5→ 0 R5 R5 R5 XOR 101 101 101 0110

0

Examples of Micro-operation for the CPU
Symbolic Designation



Stack organization











Memory Stack

A stack can be implemented in a random access memory

(RAM) attached to a CPU. The implementation of a stack

in the CPU is done by assigning a portion of memory to a

stack operation and using a processor register as a stack

pointer. The starting memory location of the stack is

specified by the processor register as stack pointer.











Instruction Formats

. A computer will usually have a variety of instruction code formats. It is the function of the control unit within the 
CPU to interpret each instruction code and provide the necessary control functions needed to process the 
instruction.

. The bits of the instruction are divided into groups called fields. The most common fields found in instruction 
formats are: 

1 An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor registers. 

3. A mode field that specifies the way the operand or the effective address is determined. 

The operation code field of an instruction is a group of bits that define various processor operations, such as 
add, subtract, complement, and shift.

Operands residing in processor registers are specified with a register address. A register address is a 
binary number of k bits that defines one of 2k registers in the CPU. Thus a CPU with 16 processor 
registers R0 through R15 will have a register address field of four bits. The binary number 0101, for 
example, will designate register R5.



The  three types of CPU organizations: 
1 Single accumulator organization. 
2 General register organization. 
3 Stack organization. 

All operations are performed with an implied accumulator register. The instruction format in this type of computer uses one 
address field. For example, the instruction that specifies an arithmetic addition is defined by an assembly language instruction
as ADD X. 

Where X is the address of the operand. 
The ADD instruction in this case results in the operation AC ← AC + M[X]. AC is the accumulator register and M[X] symbolizes 
the memory word located at address X.

ADD R1, R2, R3 To denote the operation R1 ← R2 + R3.
The instruction format in this type of computer needs three register address fields. 

the instruction ADD R1, R2 Would denote the operation R1 ← R1 + R2. Only register addresses for R1 and R2 need be 
specified in this instruction.

Computers with multiple processor registers use the move instruction with a mnemonic MOV to symbolize a transfer 
instruction. Thus the instruction MOV R1, R2 Denotes the transfer R1 ← R2 (or R2 ← R1, depending on the particular 
computer). Thus transfer-type instructions need two address fields to specify the source and the destination. 



Each address field may specify a processor register or a memory word. An instruction symbolized by ADD R1, X Would 
specify the operation R1 ← R + M [X]. It has two address fields, one for register R1 and the other for the memory address X.

Computers with stack organization would have PUSH and POP instructions which require an address field. Thus the 
instruction PUSH X

Will push the word at address X to the top of the stack. The stack pointer is updated automatically. Operation-type 
instructions do not need an address field in stack-organized computers. This is because the operation is performed on the 
two items that are on top of the stack. 

The instruction 

ADD 

In a stack computer consists of an operation code only with no address field. This operation has the effect of popping the 
two top numbers from the stack, adding the numbers, and pushing the sum into the stack. There is no need to specify 
operands with an address field since all operands are implied to be in the stack.

To illustrate the influence of the number of addresses on computer programs, we will evaluate the arithmetic statement X = 
(A + B) ∗ (C + D). . Using zero, one, two, or three address instruction. 



We will use the symbols ADD, SUB, MUL, and DIV for the four arithmetic operations; MOV for the transfer-type operation; and 
LOAD and STORE for transfers to and from memory and AC register

THREE-ADDRESS INSTRUCTIONS

Computers with three-address instruction formats can use each address field to specify either a processor register or a 
memory operand. 
The program in assembly language that evaluates X = (A + B) ∗ (C + D) is shown below, together with comments that 
explain the register transfer operation of each instruction.

ADD R1, A, B 
R1 ← M [A] + M [B] 
ADD R2, C, D 
R2 ← M [C] + M [D] 
MUL X, R1, R2 
M [X] ← R1 ∗ R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M [A] denotes the operand at 
memory address symbolized by A. 
The advantage of the three-address format is that it results in short programs when evaluating arithmetic expressions.
The disadvantage is that the binary-coded instructions require too many bits to specify three addresses. 



TWO-ADDRESS INSTRUCTIONS

Two address instructions are the most common in commercial computers. Here again each address field can specify 
either a processor register or a memory word.

The program to evaluate X = (A + B) ∗ (C + D) is as follows: 
MOV R1, A 
R1 ← M [A] 
ADD R1, B
R1 ← R1 + M [B] 

MOV R2, C 
R2 ← M [C]
ADD R2, D 

R2 ← R2 + M [D] 
MUL R1, R2
R1 ← R1∗R2
MOV X, R1
M [X] ← R1 

The MOV instruction moves or transfers the operands to and from memory and processor registers.
The first symbol listed in an instruction is assumed to be both a source and the destination where the result of the 

operation is transferred. 



ONE-ADDRESS INSTRUCTIONS 

One-address instructions use an implied accumulator (AC) register for all data manipulation. For multiplication and division 
there is a need for a second register. However, here we will neglect the second and assume that the AC contains the result of
tall operations.
The program to evaluate X = (A + B) ∗ (C + D) is

LOAD A 
AC ← M [A]

ADD B 
AC ← A [C] + M [B]

STORE T
M [T] ← AC

LOAD C
AC ← M [C] 

ADD D 
AC ← AC + M [D] 

MUL T 
AC ← AC ∗ M [T] 

STORE X 
M [X] ← AC

All operations are done between the AC register and a memory operand. T is the address of a temporary memory location 
required for storing the intermediate result



ZERO-ADDRESS INSTRUCTIONS
A stack-organized computer does not use an address field for the instructions ADD and MUL. The PUSH and POP 

instructions, however, need an address field to specify the operand that communicates with the stack. The following 
program shows how
X = (A + B) ∗ (C + D) will be written for a stack organized computer.
(TOS stands for top of stack) 

PUSH A
TOS ← A 

PUSH B
TOS ← B

ADD 
TOS ← (A + B) 

PUSH C 
TOS ← C 

PUSH D
TOS ← D 

ADD
TOS ← (C + D)

MUL 
TOS ← (C + D) ∗ (A + B) 

POP X 
M [X] ← TOS 

To evaluate arithmetic expressions in a stack computer, it is 
necessary to convert the expression into reverse Polish 
notation. The name “zero-address” is given to this type of 
computer because of the absence of an address field in the 
computational instructions



Addressing Modes
• The operation field of an instruction specifies the operation to be performed. 

• This operation must be executed on some data stored in computer registers or memory words.

• The way the operands are chosen during program execution in dependent on the addressing mode of the instruction.

The instruction cycle is divided into three major phases:

1. Fetch the instruction from memory

2. Decode the instruction.

3. Execute the instruction.

• .. There is one register in the computer called the program counter (PC) that keeps track of the instructions in the

program stored in memory.

• PC holds the address of the instruction to be executed next and is incremented each time an

instruction is fetched from memory.

The operation code specifies the operation to be performed. 

The mode field is sued to locate the operands needed for the operation.

An address field, it may designate a memory address or a processor register.

The instruction may have more than one address field, and each address field may be associated with its own particular 

addressing mode.



Although most addressing modes modify the address field of the instruction, there are two modes that need no

address field at all. These are the implied and immediate modes.

1 Implied Mode: 

In this mode the operands are specified implicitly in the definition of the instruction. For example, the

instruction “complement accumulator” is an implied-mode instruction because the operand in the accumulator

register is implied in the definition of the instruction. In fact, all register reference instructions that sue an

accumulator are implied-mode instructions.

Figure 1: Instruction format with mode field

Zero-address instructions in a stack-organized computer are implied-mode instructions since the operands are

implied to be on top of the stack.

2 Immediate Mode:

In this mode the operand is specified in the instruction itself. The operand field contains the actual operand to 

be used in conjunction with the operation specified in the instruction. Immediate-mode instructions are useful for 

initializing registers to a constant value.

Mode          Opcode                        Address



3 Register Mode: 

In this mode the operands are in registers that reside within the CPU.The particular register is selected from a 

register field in the instruction. A k-bit field can specify any one of 2k registers.

4 Register Indirect Mode: 

In this mode the instruction specifies a register in the CPU whose contents give the address of the operand in memory. 

In other words, the selected register contains the address of the operand rather than the Op code Mode Address   operand itself. 

Before using a register indirect mode instruction, the programmer must ensure that the memory address of the operand is placed 

in the processor register with a previous instruction. A reference to the register is then equivalent to specifying a memory 

address. The advantage of a register indirect mode instruction is that the address field of the instruction sues fewer bits to select a 

register than would have been required to specify a memory address directly.

5 Auto increment or Auto decrement Mode: 

This is similar to the register indirect mode except that the register is incremented or decremented after (or before) its 

value is used to access memory. When the address stored in the register refers to a table of data in memory, it is necessary to 

increment or decrement the register after every access to the table. This can be achieved by using the increment or decrement

instruction.

6 Direct Address Mode: 

In this mode the effective address is equal to the address part of the instruction. The operand resides in memory and its 

address is given directly by the address field of the instruction. 



7 Indirect Address Mode: 

In this mode the address field of the instruction gives the address where the effective address is stored in memory. 

Control fetches the instruction from memory and uses its address part to access memory again to read the effective address.

8 Relative Address Mode: 

In this mode the content of the program counter is added to the address part of the instruction in order to obtain the 

effective address. The address part of the instruction is usually a signed number (in 2’s complement representation) which can be 

either positive or negative. When this number is added to the content of the program counter, the result produces an effective 

address whose position in memory is relative to the address of the next instruction. To clarify with an example, assume that the

program counter contains the number 825 and the address part of the instruction contains the number 24. The instruction at 

location 825 is read from memory during the fetch phase and the program counter is then incremented by one to 826 + 24 = 850.

This is 24 memory locations forward from the address of the next instruction. Relative addressing is often used with branch-type

instructions when the branch address is in the  area surrounding the instruction word itself.

9 Indexed Addressing Mode: 

In this mode the content of an index register is added to the address part of the instruction to obtain the effective 

address. The index register is a special CPU register that contains an index value. The address field of the instruction defines the 

beginning address of a data array in memory. Each operand in the array is stored in memory relative to the beginning address.

The distance between the beginning address and the address of the operand is the index value stores in the index register. Any 

operand in the array can be accessed with the same instruction provided that the index register contains the correct index value. 

The index register can be incremented to facilitate access to consecutive operands. Note that if an index-type instruction does not 

include an address field in its format, the instructionconverts to the register indirect mode of operation. Some computers dedicate 

one CPU register to function solely as an index register.



10 Base Register Addressing Mode: 

In this mode the content of a base register is added to the address part of the instruction to obtain the effective address. 

This is similar to the indexed addressing mode except that the register is now

called a base register instead of an index register. The difference between the two modes is in the way they are used rather

than in the way that they are computed. An index register is assumed to hold an index number that is relative to the

address part of the instruction. A base register is assumed to hold a base address and the address field of the instruction

gives a displacement relative to this base address. 

Numerical Example



Data Transfer and Manipulation 

Data manipulation instructions perform operations on data and provide the computational capabilities for the 
computer. These instructions perform arithmetic, logic and shift operations. A subroutine call instruction consists of an 
operation code together with an address that specifies the beginning of the subroutine.













Program Interrupt - Program interrupt refers to the transfer of program control from a currently running program to another 
service program as a result of an external or internal generated request. Control returns to the original program after the 
service program is executed. - The interrupt procedure is, in principle, quite similar to a subroutine call except for three 
Variations: (1) The interrupt is usually initiated by an internal or external signal rather than from the Execution of an 
instruction (except for software interrupt as explained later); 
(2) The address of the interrupt service program is determined by the hardware rather than from the address field of an 
instruction. 
(3) An interrupt procedure usually stores all the information –

The state of the CPU at the end of the execute cycle (when the interrupt is recognized) is determined From: 

1. The content of the program counter
2. The content of all processor registers
3. The content of certain status conditions - Program status word the collection of all status bit conditions in the CPU is 

sometimes called a program status word or PSW.

The PSW is stored in a separate hardware register and contains the status information that characterizes the state of the CPU. 



Types of Interrupts - There are three major types of interrupts that cause a break in the normal execution of a 
Program. 
They can be classified as:
1. External interrupts
2. Internal interrupts
3. Software interrupts 

External interrupts come from input-output (I/O) devices, from a timing device, from a circuit monitoring the 
power supply, or from any other external source. 

Internal interrupts arise from illegal or erroneous use of an instruction or data.

Internal interrupts are also called traps. Examples of interrupts caused by internal error conditions are register 
overflow, attempt to divide by zero, an invalid operation code, stack overflow, and protection violation. –

A software interrupt is initiated by executing an instruction. Software interrupt is a special call instruction that 
behaves like an interrupt rather than a subroutine call. It can be used by the programmer to initiate an interrupt 
procedure at any desired point in the program.



COMPUTER ARITHMETIC 

UNIT - III





COMPUTER ARITHMETIC

1. Addition and Subtraction of UnsignedNumbers
The direct method of subtraction taught in elementary schools uses the borrowconcept. In

this method we borrow a 1 from a higher significant position when theminuend digit is smaller

than the corresponding subtrahend digit. This seems to beeasiest when people perform subtraction

with paper and pencil. When subtraction isimplemented with digital hardware, this method is

found to be less efficient than themethod that uses complements.

The subtraction of two n digit unsigned numbers M – N ( N ≠ 0) in base r can bedone as follows:
1.Add the minuend M to the r’s complement of the subtrahend N.  
This performs M + (rn– N) = M – N + rn.
2.If M ≥ N, the sum will produce an end carries rn, which is discarded, and whatis left is the result M –
N.
3.If M < N, the sum does not produce an end carry and is equal to rn–(N – M), which is the r’s
complement of (N – M). To obtain the answer in afamiliar form, take the r’s complement of the sum and
place a negative signin front.

Consider, for example, the subtraction 72532 – 13250 = 59282. The 10’scomplement of

13250 is 86750. Therefore:M = 72532. 10’s complement of N = +86750. Sum = 159282Discard  

end carry, and the Answer = 59282
Since  we are dealing  with unsigned  numbers,  there  is  really no way to get anunsigned

result for the second example. When working with paper and pencil, werecognize that the answer

must be changed to a signed negative number. Whensubtracting with complements, the negative

answer is recognized by the absence ofthe end carry and the complemented result. Subtraction

with complements is donewith binary numbers in a similar manner using the same procedure

outlined above.Using the two binary numbers X = 1010100 and Y = 1000011, we perform

thesubtraction X – Y and Y – X using 2’s complements: X = 1010100. 2’s complement of Y =

+0111101, Sum = 10010001, Discard end carry 27 = -10000000. Answer: X – Y = 0010001

Y = 1000011

2’s complement of X = +0101100

Sum = 1101111

There is no end carry. Answer is negative 0010001 = 2’s complement of 1101111.

Addition and Subtraction With Signed –Magnitude Data:

We designate the magnitude of the two numbers by A and B. Where the signed numbers

are added or subtracted, we find that there are eight different conditions to consider, depending on

the sign of the numbers and the operation performed.

Operation Add Magnitudes Subtract Magnitudes

When A > B When A < B When A = B

(+A) + (+B) +(A + B)

(+A) + (– B) + (A – B) – (B – A) + (A – B)

(– A) + (+ B) – (A – B) + (B – A) + (A – B)

(– A) + (– B) – (A + B)

(+ A) – (+ B) + (A - B) – (B – A) + (A – B)

(+ A) – (– B) + (A + B)

(–A) – (+B) – (A + B)

(–A) – (–B) – (A – B) + (B – A) + (A – B)

Table: Addition and Subtraction of Signed-Magnitude Numbers



When the signs of A and B are same, add the two magnitudes and attach the sign of result

is that of A. When the signs of A and B are not same, compare the magnitudes and subtract the

smaller number from the larger. Choose the sign of the result to be the same as A, if A > B or the

complement of the sign of A if A < B. If the two magnitudes are equal, subtract B from A and

make the sign of the result will be positive.

Figure: Hardware Architecture for Addition and Subtraction of Signed-Magnitude Numbers

Figure: Flowchart

2. Multiplication



With Signed –2’s Complement Data:

Signed-Magnitude complements:

Multiplication of two fixed-point binary numbers in signed magnitude representation is

done with paper and pencil by a process of successive shift and adds operations. This process is

best illustrated with a numerical example:

This process looks at successive bits of the multiplier, least significant bit first. If the

multiplier bit is 1, the multiplicand is copied as it is; otherwise, we copy zeros. Now we shift

numbers copied down one position to the left from the previous numbers. Finally, the numbers are

added and their sum produces the product.

When multiplication is implemented in a digital computer, we change the process slightly.

Here, instead of providing registers to store and add simultaneously as many binary numbers as

there are bits in the multiplier, it is convenient to provide an adder for the summation of only two

binary numbers, and successively accumulate the partial products in a register. Second, instead of

shifting the multiplicand to left, the partial product is shifted to the right, which results in leaving



the partial product and the multiplicand in the required relative positions. Now, when the

corresponding bit of the multiplier is 0, there is no need to add all zeros to the partial product

since it will not alter its value.

The hardware for multiplication consists of the equipment given in below Figure.

Multiplicand B = 10111 E A Q SC

Multiplier in Q 0 00000 10011 101

Qn = 1; add B 10111

First partial product 0 10111

Shift right EAQ 0 01011 11001 100

Qn = 1; add B 10111

Second partial product 1 00010

Shift right EAQ 1 00001 01100 011

Qn = 0; shift right EAQ 0 01000 10110 010

Qn = 0; shift right EAQ 0 00100 01011 001

Qn = 1; add B 10111

Fifth partial product 0 11011

Shift right EAQ 0 11011
Final product in AQ = 0110110101.

Table: Numerical Example for Binary Multiplier

Booth’s Multiplication Algorithm (signed-2’s complement):

If the numbers are represented in signed 2’s complement then we can multiply them by  

using Booth algorithm. In fact the strings of 0's in the multiplier need no addition but just



shifting, and a string of l's in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1

- 2m. For example, the binary number 001111 (+15) has a string of 1's from 23 to 20(k = 3, m =  

0).

The hardware architecture for Signed – 2’s Complement as shown below

The Flowchart for Signed – 2’s Complement as shown below

The number can be represented as 2k+1 – 2m = 24- 20= 16 - 1 = 15. Therefore, the

multiplication M x 14, where M is the multiplicand and 14 the multiplier may be computed as M x

24 - M x 21. That is, the product can be obtained by shifting the binary multiplicand M four times

to the left and subtracting M shifted left once.

Booth algorithm needs examination of the multiplier bits and shifting of the partial product. Prior

to the shifting, the multiplicand added to the partial product, subtracted from the partial product,

or left unchanged by the following rules:

1. The multiplicand is subtracted from the partial product when we get the first least  

significant 1 in a string of 1's in the multiplier.
2. The multiplicand is added to the partial product when we get the first Q (provided

that there was a previous 1) in a string of 0's in the multiplier.

3. The partial product does not change when the multiplier bit is the same as the previous 

multiplier bit.



The algorithm applies to both positive and negative multipliers in 2's complement

representation. This is because a negative multiplier ends with a string of l's and the last operation

will be a subtraction of the appropriate weight. For example, a multiplier equal to -14 is

represented in 2's complement as 110010 and is treated as -24 + 22 - 21 = -14.

A numerical example of Booth algorithm is given in Table for n = 5. It gives the

multiplication of (-9) x (-13) = +117.

BR = 10111

BR + 1 = 01001 AC QR Qn+1

SC

1 0 Initial 00000 10011 0 101

Subtract BR 01001

01001

ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011

0 1 Add BR 10111

11001

ashr 11100 10110 0 010

0 0 ashr 11110 01011 0 001

1 0 Subtract BR 01001

00111

ashr 0011 10101 1 000

Table: Example of Multiplication with Booth Algorithm

3. Division Algorithms
Division of two  fixed-point binary numbers in signed magnitude representation is

performed with paper and pencil by a process of successive compare, shift and subtract

operations. Binary division is much simpler than decimal division because here the quotient digits

are either 0 or 1 and there is no need to estimate how many times the dividend or partial remainder

fits into the divisor. The division process is described in Figure. The divisor B has five bits and the

dividend A had ten bits.

Division: 11010 Quotient = Q

B = 10001 0111000000 Dividend = A

01110 5 bits of A < B, quotient has 5 Bits

011100 6 bits of A VVB

- 10001 Shift right B and subtract; enter 1 in Q

- 010110

- -10001

- - 001010 7 bits of remainder V B

- - - 010100 Shift right B and subtract; enter 1 in Q

- - - -10001

- - - -000110 Remainder < B; enter 0 in Q;

- - - - -00110 shift right B; Remainder V B

Shift right B and subtract; enter 1 in Q

Remainder < B; enter 0 in Q Final remainder

Figure : Example of Binary Division

The devisor is compared with the five most significant bits of the dividend. Since the 5-bit

number is smaller than B, we again repeat the same process. Now the 6-bit number is greater than

B, so we place a 1 for the quotient bit in the sixth position above the dividend. Now we shift

thedivisor once to the right and subtract it from the dividend. The difference is known as a partial

remainder because the division could have stopped here to obtain a quotient of 1 and a remainder



equal to the partial remainder. Comparing a partial remainder with the divisor continues the

process. If the partial remainder is greater than or equal to the divisor, the quotient bit is equal to
1. The divisor is then shifted right and subtracted from the partial remainder. If the partial

remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is needed. The

divisor is shifted once to the right in any case. Obviously the result gives both a quotient and a

remainder.

Hardware Implementation for Signed-Magnitude Data

In hardware implementation for signed-magnitude data in a digital computer, it is

convenient to change the process slightly. Subtraction is achieved by adding A to the 2's

complement of B. End carry gives the information about the relative magnitudes.

Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of

E is lost. The example is given in Figure to clear the proposed division process. The divisor is

stored in the B register and the double-length dividend is stored in registers A and Q. The

dividend is shifted to the left and the divisor is subtracted by adding its 2's complement value. E

keeps the information about the relative magnitude. A quotient bit 1 is inserted into Qn and the

partial remainder is shifted to the left to repeat the process when E = 1. If E = 0, it signifies that A

< B so the quotient in Qn remains a 0 (inserted during the shift).

Figure: Example of Binary Division with Digital Hardware

Below is a flowchart of the hardware multiplication algorithm. In the beginning, the

multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs and Qs

respectively. We compare the signs of both A and Q and set to corresponding sign of the product

since a double-length product will be stored in registers A and Q. Registers A and E are cleared

and the sequence counter SC is set to the number of bits of the multiplier. Since an operand must



be stored with its sign, one bit of the word will be occupied by the sign and the magnitude will

consist of n-1 bits.
Now, the low order bit of the multiplier in Qn is tested. If it is 1, the multiplicand (B) is

added to present partial product (A), 0 otherwise. Register EAQ is then shifted once to the right to

form the new partial product. The sequence counter is decremented by 1 and its new value

checked. If it is not equal to zero, the process is repeated and a new partial product is formed.

When SC = 0 we stops the process.

The hardware divide algorithm is given in Figure. A and Q contain the dividend and B has

the divisor. The sign of the result is transferred into Q. A constant is set into the sequence counter

SC to specify the number of bits in the quotient. As in multiplication, we assume that operands

are transferred to registers from a memory unit that has words of n bits. Since an operand must be

stored with its sign, one bit of the word will be occupied by the sign and the magnitude will

haven-1 bit.

Fig: Signed- Magnitude Division



An overflow may occur in the division operation, which may be easy to handle if we are

using paper and pencil but is not easy when using hardware. This is because the length of registers is

finite and will not hold a number that exceeds the standard length. To see this, let us consider a

system that has 5-bit registers. We use one register to hold the divisor and two registers to hold the

dividend. From the example of Figure, the quotient will consist of six bits if the five most significant

bits of the dividend constitute a number greater than the divisor. The quotient is to be stored in a

standard 5-bit register, so the overflow bit will require one more flip-flop for storing the sixth bit.

This divide-overflow condition must be avoided in normal computer operations because the entire

quotient will be too long for transfer into a memory unit that has words of standard length, that is,

the same as the length of registers. Provisions to ensure that this condition is detected must be

included in either the hardware or the software of the computer, or in a combination of the two.

When the dividend is twice as long as the divisor, we can understand the condition for  

overflow as follows:

A divide-overflow occurs if the high-order half bits of the dividend makes a number greater  

than or equal to the divisor. Another problem associated with division is the fact that a division by

zero must be avoided. The divide-overflow condition takes care of this condition as well. This  

occurs because any dividend will be greater than or equal to a divisor, which is equal to zero.

Overflow condition is usually detected when a special flip-flop is set. We will call it a divide-

overflow flip-flop and label it DVF.

Signed-2’s Complement Division Algorithm as

Examples:



Figure: Registers for Floating Point arithmetic  

operations

The AC has a mantissa whose sign is in As, and a magnitude that is in A. The diagram shows

the most significant bit of A, labelled by A1. The bit in his position must be a 1 to normalize

4. Floating-point Arithmetic operations
In many high-level programming languages we have a facility for specifying floating-point

numbers. The most common way is by a real declaration statement. High level programming

languages must have a provision for handling floating-point arithmetic operations. The operations

are generally built in the internal hardware. If no hardware is available, the compiler must be

designed with a package of floating-point software subroutine. Although the hardware method is

more expensive, it is much more efficient than the software method. Therefore, floating- point

hardware is included in most computers and is omitted only in very small ones.

Basic Considerations: There are two part of a floating-point number in a computer - a mantissa m

and an exponent e. The two parts represent a number generated from multiplying m times a radix r

raised to the value of e. Thus m x re

The mantissa may be a fraction or an integer. The position of the radix point and the value of the

radix r are not included in the registers. For example, assume a fraction representation and a radix

10. The decimal number 537.25 is represented in a register with m = 53725 and e = 3 and is

interpreted to represent the floating-point number
.53725 x 103

A floating-point number is said to be normalized if the most significant digit of the mantissa

in nonzero. Biased exponents have the advantage that they contain only positive numbers. Now it

becomes simpler to compare their relative magnitude without bothering about their signs. Another

advantage is that the smallest possible biased exponent contains all zeros. The floating-point

representation of zero is then a zero mantissa and the smallest possible exponent.

Register Configuration: The register configuration for floating-point operations is shown in figure.

As a rule, the same registers and adder used for fixed-point arithmetic are used for processing the

mantissas. The difference lies in the way the exponents are handled.

The register organization for floating-point operations is shown in Fig. Three registers are there,

BR, AC, and QR. Each register is subdivided into two parts. The mantissa part has the same

uppercase letter symbols as in fixed-point representation. The exponent part may use corresponding

lower-case letter symbol.



the number. Note that the symbol AC represents the entire register, that is, the concatenation of As, 

A and a.

In the similar way, register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. A  

parallel-adder  adds the two  mantissas and  loads the  sum  into  A and  the carry into  E. A separate

parallel adder can be used for the exponents. The exponents do not have a district sign bit because  

they are biased but are represented as a biased positive quantity. It is assumed that the floating-point

numbers are so large that the chance of an exponent overflow is very remote and so the exponent  

overflow  will  be  neglected.  The  exponents  are  also  connected  to  a  magnitude  comparator that
provides three binary outputs to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so they binary point is assumed to

reside to the left of the magnitude part. Integer representation for floating point causes certain

scaling problems during multiplication and division. To avoid these problems, we adopt a fraction

representation.

The numbers in the registers should initially be normalized. After each arithmetic operation,

the result will be normalized. Thus all floating-point operands are always normalized.
Addition and Subtraction of Floating Point Numbers: During addition or subtraction, the two

floating-point operands are kept in AC and BR. The sum or difference is formed in the AC. The

algorithm can be divided into four consecutive parts:

1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas

4. Normalize the result

A floating-point number cannot be normalized, if it is 0. If this number is used for

computation, the result may also be zero. Instead of checking for zeros during the normalization

process we check for zeros at the beginning and terminate the process if necessary. The alignment of

the mantissas must be carried out prior to their operation. After the mantissas are added or

subtracted, the result may be un-normalized. The normalization procedure ensures that the result is

normalized before it is transferred to memory.

For adding or subtracting two floating-point binary numbers, if BR is equal to zero, the

operation is stopped, with the value in the AC being the result. If AC = 0, we transfer the content of

BR into AC and also complement its sign we have to subtract the numbers. If neither number is

equal it to zero, we proceed to align the mantissas.

The addition and subtraction of the two mantissas is similar to the fixed-point addition and

subtraction algorithm presented in Fig. The magnitude part is added or subtracted depends on the

operation and the signs of the two mantissas. If an overflow occurs when the magnitudes are added,

it is transferred into flip-flop E. If E = 1, the bit is transferred into A1 and all other bits of A are

shifted right. The exponent must be incremented so that it can maintain the correct number.

If the magnitudes were subtracted, there may be zero or may have an underflow in the result.

If the mantissa is equal to zero the entire floating-point number in the AC is cleared to zero.

Otherwise, the mantissa must have at least one bit that is equal to 1. The mantissa has an underflow if

the most significant bit in position A1, is 0. In that case, the mantissa is shifted left and the exponent

decremented. The bit in A1 is checked again and the process is repeated until A1 = 1. When A1 = 1,

the mantissa is normalized and the operation is completed.



Figure: Addition and Subtraction of floating –point numbers

Multiplication of Floating Point Numbers:

The procedure for multiplication is divided in to below things:

1. Check for zeros.

2. Add the exponents.

3. Multiply the mantissas

4. Normalize the result

The procedure is as showed in below flowcharts.



Fig: Flowchart for floating-point multiplication

Division of Floating Point Numbers:

The procedure for division is divided in to below things:

1. Check for zeros.

2. Subtract the exponents.

3. Divide the mantissas

4. Normalize the result

The procedure is as showed in below flowcharts.



Fig: Flowchart for floating-point division



Fig: Flowchart Decimal Arithmetic Multiplication

Fig: Flowchart Decimal Arithmetic Division
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Overview

➢ Peripheral Devices

➢ Input-Output Interface

➢ Asynchronous Data Transfer

➢ Modes of Transfer

➢ Priority Interrupt

➢ Direct Memory Access

➢ Input-Output Processor

➢ Serial Communication



Input Output Organization

– I/O Subsystem

• Provides an efficient mode of communication  

between the central system and the outside  

environment

– Programs and data must be entered into computer  

memory for processing and results obtained from  

computer must be recorded and displayed to user.



Peripheral Devices

• Devices that are under direct control of computer are said to be  

connected on-line.

• Input or output devices attached to the computer are also called 

peripherals.

• There are three types of peripherals :

• Input peripherals

• Output peripherals

• Input-output peripherals

Peripheral (or I/O Device)

Monitor (Visual Output Device) : CRT, LCD

KeyBoard (Input Device) : light pen, mouse, touch screen, joy stick  

Printer (Hard Copy Device) : Daisy wheel, dot matrix and laser printer  

Storage Device : Magnetic tape, magnetic disk



Peripheral Devices

Input Devices

• Keyboard

• Optical input devices

- Card Reader

- Paper Tape Reader

- Bar code reader

- Optical Mark Reader

• Magnetic Input Devices

- Magnetic Stripe Reader

• Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

• •

Output Devices

• Card Puncher, Paper Tape Puncher

• CRT

• Printer (Daisy Wheel, Dot Matrix, Laser)

• Plotter



I/O Interface

• Provides a method for transferring information between internal storage (such

as memory and CPU registers) and external I/O devices.

• They are special hardware components between CPU and peripheral to  

supervise and synchronize all input and output transfer.

• They are called interface units because they interface between the processor  

bus processor bus and the peripheral device.

• Resolves the differences between the computer and peripheraldevices

(1) Peripherals – Electromechanical or Electromagnetic Devices

CPU or Memory - Electronic Device

– Conversion of signal values required  

(2). Data Transfer Rate

• Peripherals - Usually slower

• CPU or Memory - Usually faster than peripherals

– Some kinds of Synchronization mechanism may be needed

(3) Data formats or Unit of Information

• Peripherals – Byte, Block, …

• CPU or Memory – Word

(4) Operating modes of peripherals may differ

• must be controlled so that not to disturbed other peripherals connected to CPU



I/O Bus and Interface
Data  

Address  

Control

Processor

Interface Interface Interface Interface

Keyboard  
and

display  
terminal

Printer Magnetic  
disk

Magnetic  
tape

I/O bus

Interface :

- Decodes the device address (device code)

- Decodes the commands (operation)
- Provides signals for the peripheral controller
- Synchronizes the data flow and supervises
the transfer rate between peripheral and CPU or Memory

4 types of command interface can receive : control, status, data o/p and data i/p



•Control command : is issued to activate peripheral and to inform what to do

•Status command : used to test various status condition in the interface and  

the peripherals

•Data o/p command : causes the interface to respond by transferring data from  

the bus into one of its registers

•Data i/p command : interface receives an item of data from the peripheral and  

places it in its buffer register.

I/O Command is an instruction that is executed in the interface and its  

attached peripheral units.



I/O Bus and Memory Bus

• Functions of Buses

•MEMORY BUS is for information transfers between CPU and the MM
• I/O BUS is for information transfers between CPU and I/O devices

through  their I/O interface

•Three ways , bus can communicate with memory and I/O :

(1) use two separate buses, one to communicate with memory and the  other with I/O

interfaces

(2) Use one common bus for memory and I/O but separate control lines  for each

(3) Use one common bus for memory and I/O with common control

• lines for both



Isolated I/O

- Many computers use common bus to transfer information between  
memory or I/O.

- Separate I/O read/write control lines in addition to memory
read/write  control lines

- Separate (isolated) memory and I/O address spaces

- Distinct input and outputinstructions

- each associated with address of interfaceregister

Memory-mapped I/O

- A single set of read/write control lines
(no distinction between memory and I/O transfer)

- Memory and I/O addresses share the common address space

-> reduces memory address range available

- No specific input or output instruction

-> The same memory reference instructions can  
be used for I/O transfers

- Considerable flexibility in handling I/O operations
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* Employs a single control line to time each transfer

* The strobe may be activated by either the source or the destination unit

STROBE CONTROL

Source  

unit

Destination  

unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Timing Diagram

Source-Initiated Strobe

for Data Transfer

Source  

unit

Destination  

unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Asynchronous Data Transfer

Destination-Initiated Strobe 

for Data Transfer

Timing Diagram



HANDSHAKING

Problems in Strobe Methods

Source-Initiated

The source unit that initiates the transfer has no way of knowing  
whether the destination unit has actually received data

Destination-Initiated

The destination unit that initiates the transfer no way of knowing
whether the source has actually placed the data on the bus

To solve this problem, the HANDSHAKE method introduces a second  
control signal to provide a Reply to the unit that initiates the transfer

Asynchronous Data Transfer



SOURCE-INITIATED TRANSFER USING HANDSHAKE

* Allows arbitrary delays from one state to the next
* Permits each unit to respond at its own data transfer rate
* The rate of transfer is determined by the slower unit

Block Diagram

Timing Diagram

Accept data from bus.  
Enable data accepted

Disable data accepted.  
Ready to accept data  
(initial state).

Sequence of Events
Place data on bus.  
Enable data valid.

Source unit Destination unit

Disable data valid.  
Invalidate data on bus.

Destination  
unit

Data bus

Data bus

Data valid

Valid data

Source  
unit

Data valid

Data accepted

Data accepted



DESTINATION-INITIATED TRANSFER USING HANDSHAKE

* Handshaking provides a high degree of flexibility and reliability because the

successful completion of a data transfer relies on active participation by both units

* If one unit is faulty, data transfer will not be completed

-> Can be detected by means of a timeout mechanism

Block Diagram

Timing Diagram

Destination  
unit

Data bus

Source  
unit

Data valid

Ready for

data

Sequence of Events

Place data on bus.  
Enable data valid.

Source unit Destination unit

Ready to accept data.  
Enable ready for data.

Disable data valid.  
Invalidate data on bus  
(initial state).

Accept data from bus.  
Disable ready for data.

Ready for data

Data valid

Data bus
Valid data



ASYNCHRONOUS SERIAL TRANSFER

Asynchronous serial transfer
Synchronous serial transfer  
Asynchronous parallel transfer  
Synchronous parallel transfer

- Employs special bits which are inserted at both

ends of the character code

- Each character consists of three parts; Start bit; Data bits; Stop bits.

A character can be detected by the receiver from the knowledge of 4 rules;

- When data are not being sent, the line is kept in the 1-state (idle state)

- The initiation of a character transmission is detected  
by a Start Bit , which is always a 0

- The character bits always follow the Start Bit

- After the last character , a Stop Bit is detected when  
the line returns to the 1-state for at least 1 bit time

The receiver knows in advance the transfer rate of the  
bits and the number of information bits to expect

Four Different Types of Transfer

Asynchronous Serial Transfer

Start  
bit

(1 bit)

Character bits

1 1 0 0 0 1 0 1

Stop  
bits

(at least 1 bit)



UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER
- UART -

A typical asynchronous communication interface available as an IC

Transmitter Register
- Accepts a data byte(from CPU) through the data bus

- Transferred to a shift register for serial transmission  
Receiver

- Receives serial information into another shift register
- Complete data byte is sent to the receiver register

Status Register Bits
- Used for I/O flags and for recording errors  
Control Register Bits

- Define baud rate, no. of bits in each character, whether
to generate and check parity, and no. of stop bits

Chip select

Register select

I/O read

I/O write
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Memory Organization in Computer Architecture
A memory unit is the collection of storage units or devices together. The memory unit stores the binary information in the form of bits. Generally, memory/storage is classified into 2 categories:

•Volatile Memory: This loses its data, when power is switched off. 

•Non-Volatile Memory: This is a permanent storage and does not lose any data when power is switched off. 

Memory Hierarchy

The total memory capacity of a computer  can be visualized by hierarchy of  components.

The memory hierarchy system consists of  all storage devices contained in a computer

system from the slow Auxiliary Memory to fast Main Memory and to smaller Cache memory.



Auxillary memory access time is generally 1000 times that of the main memory, hence it is at the bottom of the 

hierarchy.

The main memory occupies the central position because it is equipped to communicate directly with the CPU 

and with auxiliary memory devices through Input/output processor (I/O).

When the program not residing in main memory is needed by the CPU, they are brought in from auxiliary memory. 

Programs not currently needed in main memory are transferred into auxiliary memory to provide space in main 

memory for other programs that are currently in use.

The cache memory is used to store program data which is currently being executed in the CPU. 

Approximate access time ratio between cache memory and main memory is about 1 to 7~10



Memory Access Methods
Each memory type, is a collection of numerous memory locations. To access data from any memory, first it must be 
located and then the data is read from the memory location. Following are the methods to access information from 
memory locations:
1.Random Access: Main memories are random access memories, in which each memory location has a unique 
address. Using this unique address any memory location can be reached in the same amount of time in any order.
2.Sequential Access: This methods allows memory access in a sequence or in order.
3.Direct Access: In this mode, information is stored in tracks, with each track having a separate read/write head.

Main Memory
The memory unit that communicates directly within the CPU, Auxillary memory and Cache memory, is called main memory. 
It is the central storage unit of the computer system. It is a large and fast memory used to store data during computer 
operations. Main memory is made up of RAM and ROM, with RAM integrated circuit chips holing the major share.
•RAM: Random Access Memory 

• DRAM: Dynamic RAM, is made of capacitors and transistors, and must be refreshed every 10~100 ms. It is slower 
and cheaper than SRAM.

• SRAM: Static RAM, has a six transistor circuit in each cell and retains data, until powered off.
• NVRAM: Non-Volatile RAM, retains its data, even when turned off. Example: Flash memory.

•ROM: Read Only Memory, is non-volatile and is more like a permanent storage for information. It also stores the bootstrap 
loader program, to load and start the operating system when computer is turned on. PROM(Programmable ROM), 
EPROM(Erasable PROM) and EEPROM(Electrically Erasable PROM) are some commonly used ROMs.



Auxiliary Memory
Devices that provide backup storage are called auxiliary memory.

For example: Magnetic disks and tapes are commonly used auxiliary devices. 

Other devices used as auxiliary memory are magnetic drums, magnetic bubble memory and optical disks. 

It is not directly accessible to the CPU, and is accessed using the Input/Output channels.

Cache Memory
The data or contents of the main memory that are used again and again by CPU, are stored in the cache memory 

so that we can easily access that data in shorter time. 

Whenever the CPU needs to access memory, it first checks the cache memory.

If the data is not found in cache memory then the CPU moves onto the main memory. 

It also transfers block of recent data into the cache and keeps on deleting the old data in cache to 

accommodate the new one.

Hit Ratio
The performance of cache memory is measured in terms of a quantity called hit ratio.

When the CPU refers to memory and finds the word in cache it is said to produce a hit.

If the word is not found in cache, it is in main memory then it counts as a miss.

The ratio of the number of hits to the total CPU references to memory is called hit ratio.

Hit Ratio = Hit/(Hit + Miss)



Associative Memory
It is also known as content addressable memory (CAM). It is a memory chip in which each bit position can be compared. 
In this the content is compared in each bit cell which allows very fast table lookup. Since the entire chip can be compared, 
contents are randomly stored without considering addressing scheme. These chips have less storage capacity than regular 
memory chips. 

Memory Mapping and Concept of Virtual Memory

The transformation of data from main memory to cache memory is called mapping. There are 3 main types of mapping:

•Associative Mapping 

•Direct Mapping 

•Set Associative Mapping 

Associative Mapping
The associative memory stores both address and data. The address value of 15 bits is 5 digit octal numbers and data is of 
12 bits word in 4 digit octal number. A CPU address of 15 bits is placed in argument register and the associative memory 
is searched for matching address.



Associative Mapping
The associative memory stores both address and data. The address value of 15 bits is 5 digit octal numbers and data is 
of 12 bits word in 4 digit octal number. A CPU address of 15 bits is placed in argument register and the associative 
memory is searched for matching address.



Direct Mapping
The CPU address of 15 bits is divided into 2 fields. In this the 9 least significant bits constitute the index field and the 
remaining 6 bits constitute the tag field. The number of bits in index field is equal to the number of address bits 
required to access cache memory.



Set Associative Mapping
The disadvantage of direct mapping is that two words with same index address can't reside in cache memory at the 
same time. This problem can be overcome by set associative mapping.
In this we can store two or more words of memory under the same index address. Each data word is stored together 
with its tag and this forms a set.



Replacement Algorithms
Data is continuously replaced with new data in the cache memory using replacement algorithms.

Following are the 2 replacement algorithms used:

•FIFO - First in First out. Oldest item is replaced with the latest item. 

•LRU - Least Recently Used. Item which is least recently used by CPU is removed. 



Virtual Memory
Virtual memory is the separation of logical memory from physical memory. This separation provides large virtual memory 
for programmers when only small physical memory is available.
Virtual memory is used to give programmers the illusion that they have a very large memory even though the computer 
has a small main memory. It makes the task of programming easier because the programmer no longer needs to worry 
about the amount of physical memory available.



Virtual memory is a valuable concept in computer architecture that allows you to run large, sophisticated programs on a 
computer even if it has a relatively small amount of RAM. A computer with virtual memory artfully juggles the conflicting 
demands of multiple programs within a fixed amount of physical memory. A PC that's low on memory can run the same 
programs as one with abundant RAM, although more slowly.

Physical vs Virtual Addresses
A computer accesses the contents of its RAM through a system of addresses, which are essentially numbers that 
locate each byte. Because the amount of memory varies from PC to PC, determining which software will work on a 
given computer becomes complicated. Virtual memory solves this problem by treating each computer as if it has a 
large amount of RAM and each program as if it uses the PC exclusively. The operating system, such as Microsoft 
Windows or Apple's OS X, creates a set of virtual addresses for each program. The OS translates virtual addresses into 
physical ones, dynamically fitting programs into RAM as it becomes available.



Paging
Virtual memory breaks programs into fixed-size blocks called pages. If a computer has abundant physical memory, the 
operating system loads all of a program's pages into RAM. If not, the OS fits as much as it can and runs the 
instructions in those pages. When the computer is done with those pages, it loads the rest of the program into RAM, 
possibly overwriting earlier pages. Because the operating system automatically manages these details, this frees the 
software developer to concentrate on program features and not worry about memory issues.

Multiprogramming
Virtual memory with paging lets a computer run many programs at the same time, almost regardless of available 
RAM. This benefit, called multiprogramming, is a key feature of modern PC operating systems, as they accommodate 
many utility programs such as printer drivers, network managers and virus scanners at the same time as your 
applications -- Web browsers, word processors, email and media players.
Paging File
With virtual memory, the computer writes program pages that have not been recently used to an area on the hard 
drive called a paging file. The file saves the data contained in the pages; if the program needs it again, the operating 
system reloads it when RAM becomes available. When many programs compete for RAM, the act of swapping pages 
to the file can slow a computer's processing speed, as it spends more time doing memory management chores and 
less time getting useful work done. Ideally, a computer will have enough RAM to handle the demands of many 
programs, minimizing the time the computer spends managing its pages.



Memory Protection
A computer without virtual memory can still run many programs at the same time, although one program might 
change, accidentally or deliberately, the data in another if its addresses point to the wrong program. Virtual memory 
prevents this situation because a program never "sees" its physical addresses. The virtual memory manager protects 
the data in one program from changes by another.



Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing with high-speed CPU. 
Cache memory is costlier than main memory or disk memory but economical than CPU registers. Cache memory is an 
extremely fast memory type that acts as a buffer between RAM and the CPU. It holds frequently requested data and 
instructions so that they are immediately available to the CPU when needed. 
Cache memory is used to reduce the average time to access data from the Main memory. The cache is a smaller and 
faster memory which stores copies of the data from frequently used main memory locations. There are various 
different independent caches in a CPU, which store instructions and data.



Levels of memory:

•Level 1 or Register –

It is a type of memory in which data is stored and accepted that are immediately stored in CPU. 

•Most commonly used register is accumulator, Program counter, address register etc. 

•Level 2 or Cache memory –

It is the fastest memory which has faster access time where data is temporarily stored for faster access. 

•Level 3 or Main Memory –

It is memory on which computer works currently. It is small in size and once power is off data no

• longer stays in this memory. 

•Level 4 or Secondary Memory –

It is external memory which is not as fast as main memory but data stays permanently in this memory. 

Cache Performance:

When the processor needs to read or write a location in main memory, 

it first checks for a corresponding entry in the cache.



•f the processor finds that the memory location is in the cache, a cache hit has occurred and data is read from cache 

•If the processor does not find the memory location in the cache, a cache miss has occurred.

• For a cache miss, the cache allocates a new entry and copies in data from main memory, then the request is 

•fulfilled from the contents of the cache. 

The performance of cache memory is frequently measured in terms of a quantity called Hit ratio.
Hit ratio = hit / (hit + miss) = no. of hits/total accesses

We can improve Cache performance using higher cache block size, 

higher associativity, reduce miss rate, reduce miss penalty, and reduce the time to hit in the cache.



1.Direct Mapping –

The simplest technique, known as direct mapping, maps each block of main memory into 

only one possible cache line. or

In Direct mapping, assigne each memory block to a specific line in the cache.

If a line is previously taken up by a memory block when a new block needs to be loaded, the old block is trashed. 

An address space is split into two parts index field and a tag field. The cache is used to store the tag field 

whereas the rest is stored in the main memory. Direct mapping`s performance is directly proportional to the Hit ratio.

i = j modulo m where i=cache line number j= main memory block number m=number of lines in the cache

For purposes of cache access, each main memory address can be viewed as consisting of three fields. 

The least significant w bits identify a unique word or byte within a block of main memory. 

In most contemporary machines, the address is at the byte level.

The remaining s bits specify one of the 2s blocks of main memory. 

The cache logic interprets these s bits as a tag of s-r bits (most significant portion) and a line field of r bits.

This latter field identifies one of the m=2r lines of the cache





Associative Mapping –

In this type of mapping, the associative memory is used to store content and addresses of the memory word. 

Any block can go into any line of the cache. This means that the word id bits are used to identify which word in 

the block is needed, but the tag becomes all of the remaining bits. This enables the placement of any word at 

any place in the cache memory. It is considered to be the fastest and the most flexible mapping form.



Set-associative Mapping –
This form of mapping is an enhanced form of direct mapping where the drawbacks of direct mapping are removed. 
Set associative addresses the problem of possible thrashing in the direct mapping method. It does this by saying 
that instead of having exactly one line that a block can map to in the cache, we will group a few lines together 
creating a set. Then a block in memory can map to any one of the lines of a specific set..Set-associative mapping 
allows that each word that is present in the cache can have two or more words in the main memory for the same 
index address. Set associative cache mapping combines the best of direct and associative cache mapping 
techniques. In this case, the cache consists of a number of sets, each of which consists of a number of lines. The 
relationships are





Application of Cache Memory –
1.Usually, the cache memory can store a reasonable number of blocks at any given time, but this number is small 
compared to the total number of blocks in the main memory. 
2.The correspondence between the main memory blocks and those in the cache is specified by a mapping function. 

Types of Cache –
•Primary Cache –
A primary cache is always located on the processor chip. This cache is small and its access time is 
comparable to that of processor registers. 
•Secondary Cache –
Secondary cache is placed between the primary cache and the rest of the memory. It is referred to as 
the level 2 (L2) cache. Often, the Level 2 cache is also housed on the processor chip. 



Locality of reference –
Since size of cache memory is less as compared to main memory. So to check which part of main memory 
should be given priority and loaded in cache is decided based on locality of reference.
Types of Locality of reference 
1.Spatial Locality of reference
This says that there is a chance that element will be present in the close proximity to the reference point and 
next time if again searched then more close proximity to the point of reference. 
2.Temporal Locality of reference
In this Least recently used algorithm will be used. Whenever there is page fault occurs within a word will not 
only load word in main memory but complete page fault will be loaded because spatial locality of reference 
rule says that if you are referring any word next word will be referred in its register that’s why we load 
complete page table so the complete block will be loaded. 


